Advertisement

Plate Tectonics, Planetary Magnetism and Life

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Of the terrestrial planets in our solar system, the Earth is a unique object in more than a few ways. The core generates a strong, persistent magnetic field that diverts most of the solar wind. While the magnetic field does not guarantee protection from the ravages of the Sun, it does divert the wind’s erosive flow from the outskirts of our atmosphere. In this chapter, we examine how such a field comes about; whether the Earth has always had it; and whether a planet can still be habitable without one.

References

Core-Mantle and Heat Flow

  1. Evidence of lower-mantle slab penetration phases in plate motions. (2008) Saskia Goes, Fabio A. Capitanio & Gabriele Morra; Nature, 451, 981–984; doi: https://doi.org/10.1038/nature06691
  2. Core–mantle boundary heat flow (2008) Thorne Lay, John Hernlund and Bruce A. Buffett. Nature Geoscience 1, 25–32 (2008) doi: https://doi.org/10.1038/ngeo.2007.44
  3. Geoneutrinos and the energy budget of the Earth. (2012) Jean-Claude Mareschal, Claude Jaupart, Catherine Phaneuf and Claire Perry; Journal of Geodynamics 54 (2012) 43–54, doi: https://doi.org/10.1016/j.jog.2011.10.005
  4. Tidal tomography constrains Earth’s deep-mantle buoyancy. (2017) Harriet C. P. Lau, Jerry X. Mitrovica, James L. Davis, Jeroen Tromp, Hsin-Ying Yang and David Al-Attar, Nature, 551, 321–326, doi: https://doi.org/10.1038/nature24452
  5. The Cretaceous superchron geodynamo: Observations near the tangent cylinder. (2002) John A. Tarduno, Rory D. Cottrell, and Alexei V. Smirnov 14020–14025 PNAS, 99 (22); doi:  https://doi.org/10.1073/pnas.222373499

The Terrestrial and Lunar Dynamos

  1. Thermal and electrical conductivity of iron at Earth’s core conditions. (2012) Monica Pozzo, Chris Davies, David Gubbins & Dario Alfe; Nature, doi: https://doi.org/10.1038/nature11031
  2. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.(2007) John A. Tarduno, Rory D. Cottrell, Michael K. Watkeys & Dorothy Bauch; Nature 446, 657–660; doi: https://doi.org/10.1038/nature05667
  3. The lunar dynamo. (2014) Benjamin P. Weiss, Sonia M. Tikoo, Science 346, Issue 6214, 1188–1189; doi:  https://doi.org/10.1126/science.1246753
  4. Evidence for an ancient lunar magnetic field. (1971) Helsley, C. E., Proceedings of the Lunar Science Conference, 2, 2485–2490Google Scholar
  5. Zonal flow formation in the Earth’s core. (2010) Takehiro Miyagoshi, Akira Kageyama & Tetsuya Sato, Nature, 463,793–796; doi: https://doi.org/10.1038/nature08754
  6. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. (2015) A. J. Biggin, E. J. Piispa, L. J. Pesonen, R. Holme, G. A. Paterson, T. Veikkolainen & L. Tauxe; Nature, 526, 245–248, doi: https://doi.org/10.1038/nature15523
  7. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. (2013) Julien Aubert, Christopher C. Finlay & Alexandre Fournier Nature, 502, 219–222; doi: https://doi.org/10.1038/nature12574

Plate Tectonics and the Terrestrial Dynamo

  1. Influence of a West Antarctic mantle plume on ice sheet basal conditions. (2017) Helene Seroussi, Erik R. Ivins, Douglas A. Wiens, Johannes Bondzio; Journal of Geophysical Research, 122, (9,) 7127–7155; doi:  https://doi.org/10.1002/2017JB014423
  2. Plate Tectonics May Control Geomagnetic Reversal Frequency. F. Pétrélis, J. Besse, J.-P. Valet. Geophysical Research Letters, 16 October 2011Google Scholar
  3. The divergent fates of primitive hydrospheric water on Earth and Mars. (2017) Jon Wade, Brendan Dyck, Richard M. Palin, James D. P. Moore and Andrew J. Smye, Nature 552, 391–394; doi: https://doi.org/10.1038/nature25031
  4. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. (2014) J. Korenaga, Journal of Geophysical Research, 116, B12403, doi:  https://doi.org/10.1029/2011JB008410, 201. Available at: http://onlinelibrary.wiley.com/doi/10.1029/2011JB008410/pdf
  5. Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels. (2016) Sanjoy M. Som, Roger Buick, James W. Hagadorn, Tim S. Blake, John M. Perreault, Jelte P. Harnmeijer and David C. Catling, Nature Geoscience 9, 448–451; doi: https://doi.org/10.1038/ngeo2713
  6. The fate of water within Earth and super-Earths and implications for plate tectonics. (2017) Sonia M. Tikoo and Linda T. Elkins-Tanton, Philos Trans A Math Phys Eng Sci., 375, 2094; doi:  https://doi.org/10.1098/rsta.2015.0394. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394257/pdf/rsta20150394.pdf
  7. Rapid Water Loss Can Extend the Lifetime of the Planetary Habitability. (2015) Takanori Kodama, Hidenori Genda, Yutaka Abe and Kevin J. Zahnle. Astrophysical Journal; arXiv:1509.03746v1Google Scholar

Venus

  1. Venus' rotation and atmospheric tides. (1978) Andrew P. Ingersoll & Anthony R. Dobrovolskis, Nature 275, 37–38Google Scholar
  2. Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry (2012) N.T. Mueller, J. Helbert, S. Erard, G. Piccioni, P. Drossart; Icarus 217 (2), 474–483 doi:  https://doi.org/10.1016/j.icarus.2011.09.026

Extrasolar Worlds

  1. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. (2017) Michaël Gillon, Amaury H. M. J. Triaud, Brice-Olivier Demory, Emmanuël Jehin, Eric Agol, Katherine M. Deck, Susan M. Lederer, Julien de Wit, Artem Burdanov, James G. Ingalls, Emeline Bolmont, Jeremy Leconte, Sean N. Raymond, Franck Selsis, Martin Turbet, Khalid Barkaoui, Adam Burgasser, Matthew R. Burleigh, Sean J. Carey, Aleksander Chaushev, Chris M. Copperwheat, Laetitia Delrez, Catarina S. Fernandes, Daniel L. Holdsworth, Enrico J. Kotze, Valérie Van Grootel, Yaseen Almleaky, Zouhair Benkhaldoun, Pierre Magain & Didier Queloz, Nature 542, 456–460; doi: https://doi.org/10.1038/nature21360
  2. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. (2016) Guillem Anglada-Escude, Pedro J. Amado, John Barnes, Zaira M. Berdinas, R. Paul Butler, Gavin A. L. Coleman, Ignacio de la Cueva, Stefan Dreizler, Michael Endl, Benjamin Giesers, Sandra V. Jeffers, James S. Jenkins, Hugh R. A. Jones, Marcin Kiraga, Martin Kurster, Marίa J. Lopez-Gonzalez, Christopher J. Marvin, Nicolas Morales, Julien Morin, Richard P. Nelson, Jose L. Ortiz, Aviv Ofir, Sijme-Jan Paardekooper, Ansgar Reiners, Eloy Rodriguez, Cristina Rodrίguez-Lopez, Luis F. Sarmiento, John P. Strachan, Yiannis Tsapras, Mikko Tuomi & Mathias Zechmeister, Nature 536, 437–440, doi: https://doi.org/10.1038/nature19106
  3. Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. (2016) Peter J. Wheatley, Tom Louden, Vincent Bourrier, David Ehrenreich and Michaël Gillon, MNRAS 000, 1–5 (2016)Google Scholar
  4. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. (2016) Julien de Wit, Hannah R. Wakeford, Michael Gillon, Nikole K. Lewis, Jeff A. Valenti, Brice-Olivier Demory, Adam J. Burgasser, Laetitia Delrez, Emmanuel Jehin, Susan M. Lederer, Amaury H. M. J. Triaud & Valerie Van Grootel, Preprint available at: arXiv:1606.01103v1Google Scholar
  5. The role of rotation on the evolution of dynamo generated magnetic fields in Super Earths. (2011) Jorge I. Zuluaga, Pablo A. Cuartas. Preprint available at: arXiv:https://arxiv.org/pdf/1101.0691v1.pdf

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations