Advertisement

The Evolution of Modern Continents

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

In Chapter  2, we looked at the formation of continental crust in the Hadean and Archaean eras. This most likely involved the ascent of hot mantle plumes. In the earliest Hadean era, these made thick basaltic plateau that gradually, and partially, melted at their bases to produce TTGs and lots of komatiite and basalt: greenstone belts. An alternative model, involving the stacking up and partial melting of blocks of basaltic-komatiitic crust, is shown in Fig. 3.1. While it is unlikely to have produced the majority of the early continents, this process could have played a role in areas where mantle motion carried young continental fragments around the surface of the young Earth.

References

Archaean and Hadean Tectonics

  1. Heat-pipe Earth. (2013) William B. Moore and A. Alexander G. Webb; Nature, 501, 501–505; doi: https://doi.org/10.1038/nature12473
  2. Early Archaean crustal evolution: evidence from ~3.5 billion year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, Australia. (2001) Green M., Available at: https://ses.library.usyd.edu.au/bitstream/2123/505/2/adt-NU20030623.11023101front.pdf
  3. Low heat flow inferred from 4 Gyr zircons suggests Hadean plate boundary interactions. (2008) Michelle Hopkins, T. Mark Harrison and Craig E. Manning, Nature, 456, 493–496; doi: https://doi.org/10.1038/nature07465
  4. Spreading continents kick-started plate tectonics. (2014) Patrice F. Rey, Nicolas Coltice & Nicolas Flament; Nature, 513, 405–408; doi:  https://doi.org/10.1038/nature13728
  5. Continent formation through time. (2014) Nick M. W. Roberts, Martin J. Van Kranendonk, Stephen Parman and Peter D. Clift. From: Roberts, N. M. W., Van Kranendonk, M., Parman, S., Shirey, S. & Clift, P. D. (eds) 2015. Geological Society, London, Special Publications, 389, 1–16.Google Scholar
  6. The growth of the continental crust: Constraints from zircon Hf-isotope data. (2010) E.A. Belousova, Y.A. Kostitsyn, W.L. Griffin, G.C. Begg, S.Y. O'Reilly, N.J. Pearson, Lithos, 119, (3–4), 457–466; doi  https://doi.org/10.1144/SP389.13
  7. Evolution of the Archaean crust by delamination and shallow subduction. (2003) Stephen F. Foley, Stephan Buhre and Dorrit E. Jacob, Nature 421, 249–252Google Scholar
  8. Late Archean Quetico accretionary complex, Superior Province, Canada. (1989) Percival J A, Williams H R, Geology, 17, 23–25Google Scholar
  9. Polat A, Kerrich R (2001) Geodynamic processes, continental growth, and mantle evolution recorded in late Archean greenstone belts of the southern Superior Province, Canada. Precambrian Research 112, 5–25CrossRefGoogle Scholar
  10. Condie K C 1998 Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97–108CrossRefGoogle Scholar
  11. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. S. Marchi, W. F. Bottke, L. T. Elkins-Tanton, M. Bierhaus, K. Wuennemann, A. Morbidelli and D. A. Kring, Nature, 511 578–582; doi: https://doi.org/10.1038/nature13539
  12. A Matter of Preservation. (2009) Chris Hawkesworth, Peter Cawood, Tony Kemp, Craig Storey, Bruno Dhuime, Science, 323, 49–50Google Scholar
  13. Oceanic plateau model for continental crustal growth in the archaean, a case study from the Kostomuksha greenstone belt, NW Baltic Shield. (1998) Puchtel I S, Hofmann A W, Mezger K, Jochum K P, Shchipansky A A, Samsonov A V Earth and Planetary Science Letters 155, 57–74Google Scholar
  14. Plate tectonics on the Earth triggered by plume-induced subduction initiation. (2015) T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev & S. A. Whattam, Nature, 5 two 7, 221–225; doi: https://doi.org/10.1038/nature15752
  15. The onset of interaction between the hydrosphere and oceanic crust, and the origin of the first continental lithosphere. Maarten J. De Wit and Andrew Hynes; From COWARD, M. E & PIES, A. C. (eds), 1995, Early Precambrian Processes, Geological Society Special Publication No. 95, pp. 1–9.Google Scholar
  16. Helium isotopic evidence for episodic mantle melting and crustal growth. (2007) S. W. Parman, Nature, 499, 900–903; doi: https://doi.org/10.1038/nature05691
  17. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. (2001) A Polat, R Kerrich, Contributions to Mineralogy and Petrology, 141, 36–52Google Scholar
  18. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. (1997) Puchtel I S, Haase K M, Hofmann A W, Chauvel C, Kulikov V S, GarbeSchonberg C D, Nemchin A A Geochimica Et Cosmochimica Acta 61, 1205–22Google Scholar
  19. Did prolonged two-stage fragmentation of the supercontinent Kenorland lead to arrested orogenesis on the southern margin of the Superior province? (2015) Grant M. Young, Geoscience Frontiers, 6, 419–435; doi:  https://doi.org/10.1016/j.gsf.2014.04.003
  20. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? (1998) Maarten J. de Wit, Precambrian Research, 91, 181–226Google Scholar
  21. Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. (2000) M G Green, P J Sylvester, R Buick, Tectonophysics 322, 69–88Google Scholar
  22. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. (2013) Magali Pujol, Bernard Marty, Ray Burgess, Grenville Turner & Pascal Philippot Nature, 498, 87–90; doi: https://doi.org/10.1038/nature12152

The Proterozoic

  1. Chapter 5.1 Configuration of Pan-African Orogenic Belts in Southwestern Africa. Developments in Precambrian Geology 16. (2009) Available at: https://www.researchgate.net/publication/251455251; Chapter 51 Configuration of Pan-African Orogenic Belt in Southwestern Africa; doi:  https://doi.org/10.1016/S0166-2635(09)01610-7
  2. Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints. (1999) Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schonberg C D, Samsonov A V, Schipansky A A Geochimica Et Cosmochimica Acta 63, 3579–95Google Scholar
  3. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. T. Næraa, A. Schersten, M. T. Rosing, A. I. S. Kemp, J. E. Hoffmann, T. F. Kokfelt and M. J. Whitehouse Nature, 485, 627-630Google Scholar
  4. The Structural and Geochemical Evolution of the Continental-Crust - Support for the Oceanic Plateau Model of Continental Growth. (1995) Abbott D, Mooney W, Reviews of Geophysics 33, 231-42Google Scholar
  5. Paleo-Mesoproterozoic Supercontinents – A Paleomagnetic View. (2012) L.J. Pesonen, S. Mertanen and T. Veikkolainen, Geophysica, 48(1–2), 5–47Google Scholar
  6. Continental growth during a 1.9-Ga superplume event. (2002) K C Condie, Journal of Geodynamics 34, 249-64Google Scholar
  7. Tectonic model for the Proterozoic growth of North America (2008) Steven J. Whitmeyer and Karl E. Karlstrom Geosphere; three (4); 220–259; doi:  https://doi.org/10.1130/GES00055.1
  8. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. (2012) Joseph G. Meert, Gondwana Research, 21, 987–993, doi: https://doi.org/10.1016/j.gr.2011.12.002
  9. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. (2012) Birger Rasmussen, Ian R. Fletcher, Andrey Bekker, Janet R. Muhling, Courtney J. Gregory & Alan M. Thorne, Nature, 484, 496-501: doi: https://doi.org/10.1038/nature11021
  10. The supercontinent cycle: A retrospective essay. (2014) R. DamianNance, J. BrendanMurphy, M. Santosh, Gondwana Research, 25, (1), Pages 4-29; doi:  https://doi.org/10.1016/j.gr.2012.12.026
  11. Mantle convection modeling of the supercontinent cycle: Introversion, extroversion, or a combination? (2014) Masaki Yoshida, M. Santosh, Geoscience Frontiers, 5, 77-81; doi: doi: https://doi.org/10.1016/j.gsf.2013.06.002
  12. The making and unmaking of a supercontinent: Rodinia revisited. Joseph G. Meerta, Trond H. Torsvik Tectonophysics 375 (2003) 261–288Google Scholar
  13. A Neoproterozoic Snowball Earth. (1998) Paul F. Hoffman, Alan J. Kaufman, Galen P. Halverson, Daniel P. Schrag, P. F. Hoffman, G. P. Halverson, D. P. Schrag, Science 281,1342-1344Google Scholar
  14. Persistence of a freshwater surface ocean after a snowball Earth. (2017) Jun Yang, Malte F. Jansen, Francis A. Macdonald and Dorian S. Abbot, Geology (2017) 45 (7): 615-618; doi: doi: https://doi.org/10.1130/G38920.1
  15. Paleoproterozoic closure of an Australia–Laurentia seaway revealed by megaclasts of an obducted volcanic arc in Yukon, Canada (2015) Derek J. Thorkelson, and John R. Laughton, Gondwana Research 33, 115–133; doi: https://doi.org/10.1016/j.gr.2015.01.004

The Phanerozoic

  1. Growth of Asia in the Phanerozoic - Nd Isotopic Evidence (2001) Bor-ming Jahn, Fu-yuan Wu and Bin Chen, Gondwana Research, 4, (4), 640Google Scholar
  2. Phanerozoic growth of Asia: Geodynamic processes and evolution. (2013) Journal of Asian Earth Sciences, 72, 118-128; doi:  https://doi.org/10.1016/j.jseaes.2012.06.013CrossRefGoogle Scholar
  3. Evolution of the Altaid Tectonic collage and Palaeozoic Crustal Growth in Eurasia. (1993). Ali Mehmet Celal Sengor, B. A. Natal’in and V. S. Burtman, Nature, 364, 299-307Google Scholar
  4. A new concept of continental construction in the Central Asian Orogenic Belt (2011) Inna Safonova, Reimar Seltmann, Alfred Kröner, Dmitry Gladkochub, Karel Schulmann, Wenjiao Xiao, Juyong Kim, Tsuyoshi Komiya and Min Sun, 186-196; Geodynamics 34(2). Available at: https://www.researchgate.net/publication/235706541_A_new_concept_of_continental_construction_in_the_Central_Asian_Orogenic_Belt_Compared_to_actualistic_examples_from_the_Western_Pacific
  5. The Altaids as seen by Eduard Suess, and present thinking on the Late Mesoproterozoic to Palaeozoic evolution of Central Asia. (2014) Alfred Kröner & Yamirka Rojas-Agramonte, Austrian Journal of Earth Sciences Volume 107 (1)Google Scholar
  6. The Uralides and the motion of the Russian and Siberian platform. (1970) Warren Hamilton. Geological Society of America Bulletin 81 (9), 2553-2576.Google Scholar

The Laramides

  1. Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous. (2008a) Lijun Lijun Liu, Sonja Spasojević and Michael Gurnis, Science 322, 934-938; doi:  https://doi.org/10.1126/science.1162921
  2. The Canadian Cordillera as a modern analogue of Proterozoic crustal growth. 1991 S D Samson, P J Patchett Australian Journal of Earth Sciences 38, 595–611Google Scholar
  3. Intra-oceanic subduction shaped the assembly of Cordilleran North America. (2013) Karin Sigloch and Mitchell G. Mihalynuk, Nature, 496, 50-56; doi: https://doi.org/10.1038/nature12019
  4. Structural evolution of a Mesozoic backarc fold-and-thrust belt in the U.S. Cordillera: New evidence from northern Nevada (2002) Sandra J. Wyld, Geological Society of America Bulletin, 114 (11), 1452-1468; doi:  https://doi.org/10.1130/0016-7606
  5. Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. (2015a) W. Adolph Yonkee, Arlo Brandon Weil, Earth-Science Reviews 150, 531–593 doi: https://doi.org/10.1016/j.earscirev.2015.08.001
  6. Formation of new continental crust in Western British Columbia during transpression and transtension. Earth and Planetary Science Letters 249, 29-38Google Scholar
  7. Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceou. (2008b) Lijun Liu, Sonja Spasojević, Michael Gurnis. Science 322, 934-938Google Scholar
  8. Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah. (2006) Peter G. DeCelles and James C. Coogan GSA Bulletin; 118; (7/8), 841–864; doi:  https://doi.org/10.1130/B25759.1;
  9. Intra-oceanic subduction shaped the assembly of Cordilleran North America. (2013) Karin Sigloch & Mitchell G. Mihalynu; Nature, 496, 50-56; doi: https://doi.org/10.1038/nature12019
  10. P and S wave tomography of the mantle beneath the United States. (2014) Brandon Schmandt and Fan-Chi Lin, Geophys. Res. Lett., 41, 1-14; doi: https://doi.org/10.1002/2014GL061231
  11. Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. (2015b) W. Adolph Yonkee, Arlo Brandon Weil, Earth-Science Reviews, 150, 531–593; doi: https://doi.org/10.1016/j.earscirev.2015.08.001
  12. Continental accretion and orogeny: from oceanic plateaus to allochthonous terranes. (1981) Z Ben-Avraham, A Nur, D Jones, A Cox, Science, 213, 47-54Google Scholar
  13. Lithospheric Buoyancy and Collisional Orogenesis - Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts. (1993) Cloos M Geological Society of America Bulletin 105, 715-37Google Scholar
  14. Magmatic growth and batholithic root development in the northern Sierra Nevada, California(2012) M.R. Cecil, G.L. Rotberg, M.N. Ducea, J.B. Saleeby, and G.E. Gehrels Geosphere; 8 (3); 592–606; doi: https://doi.org/10.1130/GES00729.
  15. Lithospheric structure in northwestern Canada from Lithoprobe. (2005) Ron M Clowes, Philip TC Hammer, Gabriela Fernández-Viejo and J Kim Welford, Canadian Journal of Earth Sciences, 2005, 42(6): 1277-1293, doi:  https://doi.org/10.1139/e04-069
  16. An 1800 km cross section of the lithosphere through the northwestern North American plate: lessons from 4.0 billion years of Earth's history. Cook F A, Erdmer P 2005 Canadian Journal of Earth Sciences 42, 1295-311Google Scholar

Pan-African Orogeny and Subsequent History

  1. A review of the Pan-African evolution of the Arabian Shield. (2002) Pierre Nehlig, Antonin Genna and Fawzia Asfirane, GeoArabia, 7, (1), 103-124Google Scholar
  2. The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. (2009a) G.C. Begg, W.L. Griffin, L.M. Natapov, Suzanne Y. O’Reilly, S.P. Grand, C.J. O’Neill, J.M.A. Hronsky, Y. Poudjom Djomani, C.J. Swain, T. Deen, P. Bowden Geosphere;5 (1);23–50; doi:  https://doi.org/10.1130/GES00179.1
  3. Lower Crustal Rejuvenation and Growth during Post-Thickening Collapse - Insights from a Crustal Cross-Section through a Variscan Metamorphic Core Complex. (1995) S Costa, P Rey, Geology, 23, 905-08Google Scholar
  4. The influence of lithospheric thickness variations on continental evolution. (2011) Dan McKenzie, Keith Priestley, Lithos 102 (2008) 1–11; doi: https://doi.org/10.1016/j.lithos.2007.05.005
  5. Pan-African Orogeny. (2004a) A Kröner and R J Stern, Encyclopaedia of Geology, 1, 1-16Google Scholar
  6. Pan-African Orogeny (2004b) A Kröner and R J Stern; in Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny. Available at: https://www.utdallas.edu/~rjstern/pdfs/PanAfricanOrogeny.pdf  https://doi.org/10.1016/j.gr.2015.01.004
  7. The Hoggar swell and volcanism, Tuareg shield, Central Sahara: Intraplate reactivation of Precambrian structures as a result of Alpine convergence. (2006) Jean-Paul Liégeois. www.mantleplumes.org.
  8. The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. (2009b) G.C. Begg, W.L. Griffin, L.M. Natapov, Suzanne Y. O’Reilly, S.P. Grand, C.J. O’Neill, J.M.A. Hronsky, Y. Poudjom Djomani, C.J. Swain, T. Deen, P. Bowden, Geosphere; 5(1); 23–50; doi:  https://doi.org/10.1130/GES00179.1
  9. African lithospheric structure, volcanism, and topography (1989) Lewis D. Ashwal and Kevin Burke, Earth and Planetary Science Letters, 96, 8-14Google Scholar
  10. Cenozoic alkaline volcanism of the Atakor massif, Hoggar, Algeria (2007) Abla Azzouni-Sekkal, Bernard Bonin, Amel Benhallou, Rachid Yahiaoui and Jean-Paul Liégeois. GSA Special Papers, Geological Society of America v. 418, 321-340, doi:  https://doi.org/10.1130/2007.2418(16)
  11. The Saharan Metacraton. (2002) Mohamed G. Abdelsalam, Jean-Paul Liegeois, Robert J. Stern, Journal of African Earth Sciences 34, 119–136; PII: S0899-5362(02)00013-1Google Scholar
  12. From plume head to continental lithosphere in the Arabian-Nubian shield. Stein M, Goldstein S L 1996 Nature 382, 773-78CrossRefGoogle Scholar
  13. Chromatographic metasomatism of the Arabian-Nubian lithosphere. (1997) Stein M, Navon O, Kessel R Earth and Planetary Science Letters 152, 75-91Google Scholar
  14. Tracing the plume material in the Arabian-Nubian Shield. Stein M 2003 Precambrian Research 123, 223-34Google Scholar
  15. The rise of the asthenopsheric mantle into the Arabian lithosphere and its cosnsequences: heating, melting uplifting. (2006) Stein M, IAVCEI meeting, GuangzhouGoogle Scholar

Delamination, Plumes and Continental Evolution

  1. Thinning and destruction of the cratonic lithosphere: A global perspective. (2014) Fu Yuan Wu, Yi Gang Xu, Ri Xiang Zhu and Guo Wei Zhang Science China, Earth Sciences, 57 (12): 2878–2890; doi:  https://doi.org/10.1007/s11430-014-4995-0
  2. Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective (2002) Mihai N. Ducea Journal of Geophysical Research, 107 (B11), ECV 15-1–ECV 15-13; doi:  https://doi.org/10.1029/2001JB000643
  3. Layered lithospheric mantle beneath the Ontong Java plateau: Implications from xenoliths in Alonite, Malaita, Solomon Islands. (2004) I Shigawa, A Shigenori, M Komiya, TJ Petrol 47, 2011-2044Google Scholar
  4. Creation and Destruction of Lower Continental-Crust. (1991) R W Kay, S Mahlburgkay, Geologische Rundschau, 80, 259-78Google Scholar
  5. The Caribbean–Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In: Large Igneous Provinces; Continental, Oceanic and Planetary Flood Volcanism. (1997) A C Kerr, J Tarney, G F Marriner, A Nivia, A D Saunders, American Geophysical Union Monograph, pp. 45–93Google Scholar
  6. Geochemistry and age of the Ontong Java Plateau. In: The Mesozoic Pacific. (1993) Mahoney J J, Storey M, Duncan R A, Spencer K J, Pringle M, Geology, Tectonics, and Volcanism. American Geophysical Union Monograph, 233–61Google Scholar
  7. Breakup and early seafloor spreading between India and Antarctica. (2007) Carmen Gaina, R. Dietmar Müller, Belinda Brown, Takemi Ishihara and Sergey Ivanov, Geophys. J. Int. 170, 151–169 doi:  https://doi.org/10.1111/j.1365-246X.2007.03450.x
  8. Indian and African plate motions driven by the push force of the Réunion plume head. (2011) Steven C. Cande & Dave R. Stegman, Nature, 475,47-52, doi: https://doi.org/10.1038/nature10174
  9. The rapid drift of the Indian tectonic plate. (2007) Prakash Kumar, Xiaohui Yuan, M. Ravi Kumar, Rainer Kind, Xueqing Li and R. K. Chadha, Vol 449, 894-897; doi: https://doi.org/10.1038/nature06214
  10. Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22°S–27°S) (2015) Kendra E. Murray, Mihai N. Ducea, Lindsay Schoenbohm The Geological Society of America Memoir 212, 139-166.Google Scholar
  11. Foundering Lithosphere Imaged Beneath the Southern Sierra Nevada, California, USA. (2004) Oliver S. Boyd, Craig H. Jones, Anne F. Sheehan, Science, 305, 660-662Google Scholar
  12. Continuing Colorado plateau uplift by delamination style convective lithospheric downwelling. (2011) A. Levander, B. Schmandt, M. S. Miller, K. Liu, K. E. Karlstrom, R. S. Crow, C.-T. A. Lee and E. D. Humphreys, Nature 472, 461-465; doi: https://doi.org/10.1038/nature10001
  13. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. (2013) Oliver Jagoutz and Mark D. Behn, Nature, 504,131-134; doi: https://doi.org/10.1038/nature12758
  14. Lithospheric mantle xenoliths sampled by melts from upwelling asthenosphere: The Quaternary Tasse alkaline basalts of southeastern British Columbia, Canada (2016) Eyal Friedman, Ali Polat, Derek J. Thorkelson, Robert Frei, Gondwana Research 33, 209–230; doi:  https://doi.org/10.1016/j.gr.2015.11.005
  15. Seismic and Tectonometamorphic Characters of the Lower Continental-Crust in Phanerozoic Areas - a Consequence of Post-Thickening Extension. 1993 P Rey, Tectonics, 12, 580-90Google Scholar
  16. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. (2002) Shan Gao, Roberta L. Rudnick, Richard W. Carlson, William F. McDonough, Yong-Sheng Liu, Hollister L S, Andronicos C L Earth and Planetary Science Letters, 198, 307-322, PII: S0012 - 821 X (02) 0048 9-2Google Scholar
  17. Melt Intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. (2000) Linda T. Elkins Tanton and Bradford H. Hager, Geophysical Research letters, 27 (23), 3937-3940Google Scholar
  18. Spatial Gaps in Arc Volcanism - the Effect of Collision or Subduction of Oceanic Plateaus. (1985) McGeary S, Nur A, Benavraham Z, Tectonophysics 119, 195-221Google Scholar
  19. Mantle Plumes and Episodic Crustal Growth. (1994). Stein M, Hofmann A W Nature 372, 63-68Google Scholar
  20. Dynamics of continental accretion. (2014) L. Moresi, P. G. Betts, M. S. Miller and R. A. Cayley, Nature, 508, 245–248; doi: https://doi.org/10.1038/nature13033CrossRefGoogle Scholar
  21. Plate tectonics, damage and inheritance. (2014) David Bercovici and Yanick Ricard, Nature, 508, 513–516; doi: https://doi.org/10.1038/nature13072

Diamonds

  1. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. (2015) Yaakov Weiss, John McNeill, D. Graham Pearson, Geoff M. Nowell and Chris J. Ottley Nature, 524, 339-342; doi: https://doi.org/10.1038/nature14857
  2. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. (2010) Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. Contributions to Mineralogy and Petrology, Vol. 160, No. 4, pp. 489–510, doi: https://doi.org/10.1007/s00410-010-0490-6.
  3. Microdiamonds—Frontier of ultrahigh-pressure metamorphism: A review. (2012) Dobrzhinetskaya L.F. Gondwana Research, Vol. 21, No. 1, pp. 207–223, doi:  https://doi.org/10.1016/j.gr.2011.07.014.
  4. Dynamical constraints on kimberlite volcanism. (2006) Sparks R.S.J., Baker L., Brown R.J., Field M., Schumacher J., Stripp G., Walters A. Journal of Volcanology and Geothermal Research, Vol. 155, No. 1–2, pp. 18–48, doi: https://doi.org/10.1016/j.jvolgeores.2006.02.010.
  5. A diamond trilogy; superplumes, supercontinents, and supernovae. (1999) Haggerty S.E. Science, Vol. 285, No. 5429, pp. 851–860,  https://doi.org/10.1126/science.285.5429.851.
  6. Isotopic dating of diamonds. (1999) Pearson D.G., Shirey S.B. In D.D. Lambert and J. Ruiz, Eds., Reviews in Economic Geology: Application of Radiogenic Isotopes to Ore Deposit Research and Exploration. Society of Economic Geologists, pp. 143–171.Google Scholar
  7. Diamond formation in the earth’s mantle. (1999) Navon O. Proceedings of the International Kimberlite Conference 7, Vol. 2, pp. 584–604.Google Scholar
  8. Integrated models of diamond formation and craton evolution. (2004) Shirey S.B., Richardson S.H., Harris J.W. Lithos, Vol. 77, No. 1–4, pp. 923–944, doi: https://doi.org/10.1016/j.lithos.2004.04.018.
  9. Carbon in Charge, Rob L. Evans, Science, 322, 1338-1340Google Scholar
  10. Slab melting as a barrier to deep carbon subduction (2016) Andrew R. Thomson, Michael J. Walter, Simon C. Kohn and Richard A. Brooker, Nature, 529, 76-79, doi: https://doi.org/10.1038/nature16174CrossRefGoogle Scholar
  11. Diamonds and the geology of mantle carbon. (2013) Shirey S.B., Cartigny P., Frost D.J., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. Reviews in Mineralogy and Geochemistry, Vol. 75, No. 1, pp. 355–421, doi:  https://doi.org/10.2138/rmg.2013.75.12.
  12. Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal Craton evolution. (2004) Richardson S.H., Shirey S.B., Harris J.W. Lithos, Vol. 77, Nos. 1–4, pp. 143–154, doi: https://doi.org/10.1016/j.lithos.2004.04.027.
  13. Eclogitic diamonds of Proterozoic age from Cretaceous kimberlites. (1990) Richardson S.H., Erlank A.J., Harris J.W., Hart S.R. Nature, Vol. 346, No. 6279, pp. 54–56, doi: https://doi.org/10.1038/346054a0.
  14. 40Ar/39Ar laser-probe dating of diamond inclusions from Premier kimberlite. (1989) Phillips D., Onstott T.C., Harris J.W. Nature, Vol. 340, No. 6233, pp. 460–462, doi: https://doi.org/10.1038/340460a0.
  15. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. (2008) Andrew J. Berry, Leonid V. Danyushevsky, Hugh St C. O’Neill, Matt Newville & Stephen R. Sutton, Nature 455, 960-963; doi: https://doi.org/10.1038/nature07377
  16. Subduction-driven recycling of continental margin lithosphere. (2014) A. Levander, M. J. Bezada, F. Niu, E. D. Humphreys, I. Palomeras, S. M. Thurner, J. Masy, M. Schmitz, J. Gallart, R. Carbonell and M. S. Miller, Nature, 515, 253-256, doi: https://doi.org/10.1038/nature13878
  17. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites (2009) T. P. Fischer, P. Burnard, B. Marty, D. R. Hilton, E. Füri, F. Palhol, Z. D. Sharp and F. Mangasini, Nature 459, 77-80; doi: https://doi.org/10.1038/nature07977

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations