Advertisement

Our Planet’s Torrid Heart

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

We have a peculiar and very misguided view of our planet as a solid lump of rock. This misconception is based on our everyday experience of standing on something that seems eternal and largely unchanging. If it were not for periodic earthquakes or occasional, somewhat inconveniencing eruptions, we might forget entirely that in truth, we live on a thin skin of cool rock floating on a torrid sea of malleable material.

References

Igneous Rocks

  1. An Introduction to Igneous and Metamorphic Petrology. (2001) John D. Winter, Prentice Hall, ISBN-13: 978-0132403429Google Scholar
  2. Komatiite. (2004). Nicholas Arndt, C. M. Lesher. Encyclopedia of Geology, Elsevier, 260–268, 2004. https://hal.archives-ouvertes.fr/hal-00101712
  3. The Conway granite of New Hampshire as a major low-grade thorium resource. (1962) J. A. S. Adams, M.-C. Kline, K. A. Richardson, and J. J. W. Rogers, PNAS, 48(11): 1898–1905. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221093/

Planet Formation

  1. Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity. (2004) Alan P. Boss, The Astrophysical Journal, 616, (2), 1265–1277Google Scholar
  2. Mixing in the Solar Nebula: Implications for Isotopic Heterogeneity and Large-Scale Transport of Refractory Grains. (2008) Alan P. Boss. Available at: https://arxiv.org/pdf/0801.1622.pdf
  3. Chondrule-forming Shock Waves in the Solar Nebula by X-Ray Flares (2005) T. Nakamoto, M. R. Hayashi, N. T. Kita, & S. Tachibana, Chondrites and the Protoplanetary Disk, ASP Conference Series, Vol. 341, Proceedings of a workshop held 8–11 November 2004 in Kaua'i, Hawai'i. Edited by Alexander N. Krot, Edward R. D. Scott, and Bo Reipurth. San Francisco: Astronomical Society of the Pacific, 883–892Google Scholar
  4. Evidence against a chondritic Earth. (2012) Ian H. Campbell & Hugh St C. O’Neill. Nature, 483, 553–558; doi: https://doi.org/10.1038/nature10901
  5. Core formation and metal–silicate fractionation of osmium and iridium from gold. (2009) James M. Brenan and William F. McDonough, Nature Geoscience 2, 798–80;1 doi: https://doi.org/10.1038/NGEO658
  6. Compositions of Small Planets & Implications for Planetary Dynamics. (2017) Jennifer Johnson et al. 229th AAS Meeting, abstract # 413.06Google Scholar
  7. Bashing holes in the tale of Earth’s troubled youth (2018) Adam Mann, Nature 553, 393–39Google Scholar
  8. Crustal Magmatic Processes on Earth

    1. Physical conditions on the early Earth. (2006) Jonathan I. Lunine, Phil. Trans. R. Soc. B (2006) 361, 1721–1731; doi: https://doi.org/10.1098/rstb.2006.1900
    2. Rapid formation of eclogite in a slightly wet mantle. (1975) Thomas J. Ahrens and Gerald Schubert, Earth and Planetary Science Letters, 27, (1), 90–94; doi: http://dx.doi.org/10.1016/0012-821X(75)90165-XGoogle Scholar
    3. Formation of hybrid arc andesites beneath thick continental crust. (2011) S Susanne M. Straub, Arturo Gomez-Tuena, Finlay M. Stuart, Georg F. Zellmer, Ramon Espinasa-Perena, Yue Cai, Yoshiyuki Iizuka, Earth and Planetary Science Letters, 303, (3–4), 1, 337–347; doi:  https://doi.org/10.1016/j.epsl.2011.01.013
    4. Archean komatiite volcanism controlled by the evolution of early continents. (2014) David R. Mole, Marco L. Fiorentini, Nicolas Thebaud, Kevin F. Cassidy, T. Campbell McCuaig, Christopher L. Kirkland, Sandra S. Romano, Michael P. Doublier, Elena A. Belousova, Stephen J. Barnes and John Miller, PNAS, 111 (28) 10083–10088, doi:  https://doi.org/10.1073/pnas.1400273111

    Venusian Lavas

    1. Campbell, B. A. and D. B. Campbell. Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data. (1992) Journal of Geophysical Research, 97, (E10), 16, 293–314.Google Scholar
    2. Longitudinal topographic profiles of very long channels in Venusian plains regions. (1992) Parker, T. J. et al. Lunar and Planetary Science Conference 23rd, Lunar and Planetary Institute, Houston, Texas, p. 1035–1036, 1992.Google Scholar

    Neutron Star Mergers and Nucleosynthesis

    1. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. (2017) Iair Arcavi, Griffin Hosseinzadeh, D. Andrew Howell, Curtis McCully, Dovi Poznanski, Daniel Kasen, Jennifer Barnes, Michael Zaltzman, Sergiy Vasylyev, Dan Maoz & Stefano Valenti, Nature 551, 64–66, doi: https://doi.org/10.1038/nature2429
    2. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. (2017) Daniel Kasen, Brian Metzger, Jennifer Barnes, Eliot Quataert & Enrico Ramirez-Ruiz, Nature 551, 80–84; doi: https://doi.org/10.1038/nature2445
    3. The X-ray counterpart to the gravitational-wave event GW170817. (2017) E. Troja, L. Piro, H. van Eerten, R. T. Wollaeger, M. Im, O. D. Fox, N. R. Butler, S. B. Cenko, T. Sakamoto, C. L. Fryer, R. Ricci, A. Lien, R. E. Ryan Jr, O. Korobkin, S.-K. Lee, J. M. Burgess, W. H. Lee, A. M. Watson, C. Choi, S. Covino, P. D’Avanzo, C. J. Fontes, J. Becerra González, H. G. Khandrika, J. Kim, S.-L. Kim, C.-U. Lee, H. M. Lee, A. Kutyrev, G. Lim, R. Sánchez-Ramírez, S. Veilleux, M. H. Wieringa & Y. Yoon, Nature 551, 71–74; doi:  https://doi.org/10.1038/nature24290
    4. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. (2017) E. Pian, P. D’Avanzo, S. Benetti, M. Branchesi, E. Brocato, S. Campana, E. Cappellaro, S. Covino, V. D’Elia, J. P. U. Fynbo, F. Getman, G. Ghirlanda, G. Ghisellini, A. Grado, G. Greco, J. Hjorth, C. Kouveliotou, A. Levan, L. Limatola, D. Malesani, P. A. Mazzali, A. Melandri, P. Møller, L. Nicastro, E. Palazzi, S. Piranomonte, A. Rossi, O. S. Salafia, J. Selsing, G. Stratta, M. Tanaka, N. R. Tanvir, L. Tomasella, D. Watson, S. Yang, L. Amati, L. A. Antonelli, S. Ascenzi, M. G. Bernardini, M. Boër, F. Bufano, A. Bulgarelli, M. Capaccioli, P. Casella, A. J. Castro-Tirado, E. Chassande-Mottin, R. Ciolfi, C. M. Copperwheat, M. Dadina, G. De Cesare, A. Di Paola, Y. Z. Fan, B. Gendre, G. Giuffrida, A. Giunta, L. K. Hunt, G. L. Israel, Z.-P. Jin, M. M. Kasliwal, S. Klose, M. Lisi, F. Longo, E. Maiorano, M. Mapelli, N. Masetti, L. Nava, B. Patricelli, D. Perley, A. Pescalli, T. Piran, A. Possenti, L. Pulone, M. Razzano, R. Salvaterra, P. Schipani, M. Spera, A. Stamerra, L. Stella, G. Tagliaferri, V. Testa, E. Troja, M. Turatto, S. D. Vergani & D. Vergani, Nature 551, 67–70; doi:  https://doi.org/10.1038/nature24298

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations