Imaging in CDH

  • Danielle D. DeSouzaEmail author
  • Anton Rogachov


Our understanding of brain abnormalities in headache syndromes has greatly improved with the use of advanced neuroimaging methods. Neuroimaging allows for the noninvasive examination of brain structure and function using modalities such as magnetic resonance imaging (MRI). Measures of brain structure include those that can assess gray matter volume or thickness and white matter microstructure, whereas measures of brain function include those that assess brain activity and connectivity in patients compared to controls. While most studies in the headache literature have examined episodic headache disorders, there has been a recent push toward understanding neuroimaging-based brain abnormalities associated with chronic daily headache (CDH) to gain insight into its underlying pathophysiology. This chapter focuses on studies that have primarily used MRI methods to assess structural and functional brain abnormalities in CDH. These findings are discussed in the context of clinical symptoms and other chronic pain disorders. We conclude with a discussion on future directions for neuroimaging research in CDH.


Headache Migraine Chronic daily headache MRI fMRI DTI Neuroimaging Pain Chronic pain 


  1. 1.
    Sprenger T, Borsook D. Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol. 2012;25(3):252–62.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schulte LH, May A. Functional neuroimaging in migraine: chances and challenges. Headache. 2016;56(9):1474–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Chong CD, Schwedt TJ, Dodick DW. Migraine: what imaging reveals. Curr Neurol Neurosci Rep. 2016;16(7):64.CrossRefPubMedGoogle Scholar
  5. 5.
    van Geuns RJ, Wielopolski PA, de Bruin HG, Rensing BJ, van Ooijen PM, Hulshoff M, et al. Basic principles of magnetic resonance imaging. Prog Cardiovasc Dis. 1999;42(2):149–56.CrossRefPubMedGoogle Scholar
  6. 6.
    Ashburner J, Friston KJ. Voxel-based morphometry–the methods. NeuroImage. 2000;11(6 Pt 1):805–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050–5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johansen-Berg H, Rushworth MF. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci. 2009;32:75–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.CrossRefPubMedGoogle Scholar
  10. 10.
    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7–8):435–55.CrossRefPubMedGoogle Scholar
  12. 12.
    DeSouza DD, Hodaie M, Davis KD. Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain. 2014;155(1):37–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maleki N, Gollub RL. What have we learned from brain functional connectivity studies in migraine headache? Headache. 2016;56(3):453–61.CrossRefPubMedGoogle Scholar
  15. 15.
    (IHS) HCCotIHS. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.CrossRefGoogle Scholar
  16. 16.
    Mathew NT, Stubits E, Nigam MP. Transformation of episodic migraine into daily headache: analysis of factors. Headache. 1982;22(2):66–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Davis KD, Moayedi M. Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol. 2013;8(3):518–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013;34(1):109–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30(5):263–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Tracey I. Nociceptive processing in the human brain. Curr Opin Neurobiol. 2005;15(4):478–87.CrossRefPubMedGoogle Scholar
  22. 22.
    Katsarava Z, Schneeweiss S, Kurth T, Kroener U, Fritsche G, Eikermann A, et al. Incidence and predictors for chronicity of headache in patients with episodic migraine. Neurology. 2004;62(5):788–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Aurora SK. Spectrum of illness: understanding biological patterns and relationships in chronic migraine. Neurology. 2009;72(5 Suppl):S8–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Welch KM, Nagesh V, Aurora SK, Gelman N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache. 2001;41(7):629–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Morris CM, Candy JM, Omar S, Bloxham CA, Edwardson JA. Transferrin receptors in the parkinsonian midbrain. Neuropathol Appl Neurobiol. 1994;20(5):468–72.CrossRefPubMedGoogle Scholar
  26. 26.
    Tepper SJ, Lowe MJ, Beall E, Phillips MD, Liu K, Stillman MJ, et al. Iron deposition in pain-regulatory nuclei in episodic migraine and chronic daily headache by MRI. Headache. 2012;52(2):236–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Kruit MC, Launer LJ, Overbosch J, van Buchem MA, Ferrari MD. Iron accumulation in deep brain nuclei in migraine: a population-based magnetic resonance imaging study. Cephalalgia. 2009;29(3):351–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB. Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache. 2017;57(3):400–16.CrossRefPubMedGoogle Scholar
  29. 29.
    DeSouza DD, Woldeamanuel YW, Peretz AM, Sanjanwala BM, Cowan RP. Interactions between affective measures and amygdala volume in chronic migraine: associations in the absence of group volumetric differences. Cephalalgia. 2017;37:47–8.Google Scholar
  30. 30.
    Lai TH, Chou KH, Fuh JL, Lee PL, Kung YC, Lin CP, et al. Gray matter changes related to medication overuse in patients with chronic migraine. Cephalalgia. 2016;36(14):1324–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Riederer F, Schaer M, Gantenbein AR, Luechinger R, Michels L, Kaya M, et al. Cortical alterations in medication-overuse headache. Headache. 2017;57(2):255–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Schwedt TJ, Chong CD, Wu T, Gaw N, Fu Y, Li J. Accurate classification of chronic migraine via brain magnetic resonance imaging. Headache. 2015;55(6):762–77.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gomez-Beldarrain M, Oroz I, Zapirain BG, Ruanova BF, Fernandez YG, Cabrera A, et al. Right fronto-insular white matter tracts link cognitive reserve and pain in migraine patients. J Headache Pain. 2015;17:4.CrossRefPubMedGoogle Scholar
  34. 34.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487–505.CrossRefPubMedGoogle Scholar
  35. 35.
    Neeb L, Bastian K, Villringer K, Gits HC, Israel H, Reuter U, et al. No microstructural white matter alterations in chronic and episodic migraineurs: a case-control diffusion tensor magnetic resonance imaging study. Headache. 2015;55(2):241–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Hubbard CS, Khan SA, Keaser ML, Mathur VA, Goyal M, Seminowicz DA. Altered brain structure and function correlate with disease severity and pain catastrophizing in migraine patients. eNeuro. 2014;1(1):e20.14.CrossRefPubMedGoogle Scholar
  37. 37.
    Chen Z, Chen X, Liu M, Liu S, Shu S, Ma L, et al. Altered functional connectivity of the marginal division in migraine: a resting-state fMRI study. J Headache Pain. 2016;17(1):89.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain. 2017;18(1):7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    DeSouza DD, Woldeamanuel YW, O'Hare M, Sanjanwala BM, Cowan RP. Abnormal amygdala volumes predicted by behavioral measures in patients with chronic daily headache. Ann Neurol. 2016;80:S240–S1.Google Scholar
  40. 40.
    Carrasquillo Y, Gereau RW. Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci. 2007;27(7):1543–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Ji G, Neugebauer V. Hemispheric lateralization of pain processing by amygdala neurons. J Neurophysiol. 2009;102(4):2253–64.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gonçalves L, Dickenson AH. Asymmetric time-dependent activation of right central amygdala neurones in rats with peripheral neuropathy and pregabalin modulation. Eur J Neurosci. 2012;36(9):3204–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology. 2017;88(21):2011–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Schulte LH, Sprenger C, May A. Physiological brainstem mechanisms of trigeminal nociception: an fMRI study at 3T. NeuroImage. 2016;124(Pt A):518–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Androulakis XM, Krebs K, Peterlin BL, Zhang T, Maleki N, Sen S, et al. Modulation of intrinsic resting-state fMRI networks in women with chronic migraine. Neurology. 2017;89(2):163–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Schwedt TJ, Schlaggar BL, Mar S, Nolan T, Coalson RS, Nardos B, et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache. 2013;53(5):737–51.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tessitore A, Russo A, Conte F, Giordano A, De Stefano M, Lavorgna L, et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache. 2015;55(6):794–805.CrossRefPubMedGoogle Scholar
  48. 48.
    Amin FM, Hougaard A, Magon S, Asghar MS, Ahmad NN, Rostrup E, et al. Change in brain network connectivity during PACAP38-induced migraine attacks: a resting-state functional MRI study. Neurology. 2016;86(2):180–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Weiller C, May A, Limmroth V, Jüptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.CrossRefGoogle Scholar
  50. 50.
    Fumal A, Laureys S, Di Clemente L, Boly M, Bohotin V, Vandenheede M, et al. Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain. 2006;129(Pt 2):543–50.CrossRefPubMedGoogle Scholar
  51. 51.
    Leiken KA, Xiang J, Curry E, Fujiwara H, Rose DF, Allen JR, et al. Quantitative neuromagnetic signatures of aberrant cortical excitability in pediatric chronic migraine. J Headache Pain. 2016;17:46.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci. 2011;31(16):5956–64.CrossRefPubMedGoogle Scholar
  53. 53.
    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28–38.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu S, Cai W, Zhang F, Fulham M, Feng D, Pujol S, et al. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform. 2015;2(3):167–80.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15(4):528–36.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neurology and Neurological SciencesStanford UniversityPalo AltoUSA
  2. 2.Institute of Medical Science, Krembil Research InstituteToronto Western HospitalTorontoCanada

Personalised recommendations