Identifying Pixels Classified Uncertainties ckMeansImage Algorithm

  • Rogério R. de Vargas
  • Ricardo Freddo
  • Cristiano GalafassiEmail author
  • Sidnei L. B. Gass
  • Alexandre Russini
  • Benjamín Bedregal
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 855)


Floods may occur in rivers when the flow rate exceeds the capacity of the river channel, particularly at bends or meanders in the waterway. Floods often cause damage to homes and businesses becoming the most prevalent type of disaster in the world and the one with the highest number of events, causing the greatest economic losses, affecting a large number of people. This paper has the objective of mapping and identifying the flooding areas of a selected region in the municipality of Itaqui-RS using remote sensing. In order to do it, we used the Fuzzy ckMeansImage Algorithm to group and to classify the image into similarity clusters. The methodology consists in processing satellite images before and after the flooding occurs. Finally, we discuss the processed images and present the flooded area.


ckMeans Clustering Flood Fuzzy Sensing remote 


  1. 1.
    Kumar, S.: Basics of Remote Sensing and GIS. Laxmi Publications (P) Ltd., New Delhi (2005)Google Scholar
  2. 2.
    Jensen, J.: Remote Sensing of the Environment: An Earth Resource Perspective, 2nd edn. Pearson Eduaction, South Asia (2007)Google Scholar
  3. 3.
    Sausen, T., Narvaes, S.: Sensoriamento remoto para inundações e enxurradas. In: Sausen, T.M., Lacruz, M.S.P. (eds.) Sensoriamento remoto para desastres. Oficina de textos, São Paulo (2015)Google Scholar
  4. 4.
    Meneses, R., Sano, E.: Classificação pixel a pixel de imagens. In: Meneses, P.R., Almeida, T. (eds.) Introdução ao processamento de imagens de sensoriamento remoto. UnB, Brasília (2012)Google Scholar
  5. 5.
    Melgani, F., Al Hashemy, B.A.R., Taha, S.: An explicit fuzzy supervised classification method for multispectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 38, 287–295 (2000)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  7. 7.
    Freddo, R., de Vargas, R., Galafassi, C., Russini, A., Pinto, T.: Desenvolvimento de uma ferramenta web para a execução do algoritmo Fuzzy ckMeans no processamento de imagens. Revista Jr de Iniciação Científica em Ciências Exatas e Engenharia (ICCEEg) 1(15), 1–10 (2017)Google Scholar
  8. 8.
    de Vargas, R., Bedregal, B.: A comparative study between fuzzy C-means and ckMeans algorithms. In: Proceedings of the Conference on North American Fuzzy Information Processing Society (NAFIPS 2010), Toronto, Canada (2010)Google Scholar
  9. 9.
    Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)CrossRefGoogle Scholar
  11. 11.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  12. 12.
    Cox, E. (ed.): Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Elsevier/Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  13. 13.
    Wierman, M.: An Introduction to the Mathematics of Uncertainty, Center for the Mathematics of Uncertainty. Creighton University (2010)Google Scholar
  14. 14.
    Ponce-Cruz, P., Ramírez-Figueroa, F.: Intelligent Control Systems with LabVIEW\(^{TM}\). Springer, London (2009).
  15. 15.
    Yang, M.S., Wu, K.L., Hsieh, J.N., Yu, J.: Alpha-cut implemented fuzzy clustering algorithms and switching regressions. Trans. Sys. Man Cyber. Part B 38(3), 588–603 (2008)CrossRefGoogle Scholar
  16. 16.
    Mukhopadhaya, S.: Fuzzy c-means classifier with alpha-cuts in application for similarity and dissimilarity measures: a literature survey. J. Basic Appl. Eng. Res. 3, 2350–77 (2016)Google Scholar
  17. 17.
    Eastman, R.: TerrSet Geospatial Monitoring and Modeling Software. ClarkLabs, Worcester (2016).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rogério R. de Vargas
    • 1
  • Ricardo Freddo
    • 1
  • Cristiano Galafassi
    • 1
    Email author
  • Sidnei L. B. Gass
    • 1
  • Alexandre Russini
    • 1
  • Benjamín Bedregal
    • 2
  1. 1.Laboratório de Sistemas Inteligentes e Modelagem (LabSIM)Federal University of PampaItaquiBrazil
  2. 2.Logic, Language, Information, Theory and Applications (LoLITA)Federal University of Rio Grande do NorteNatalBrazil

Personalised recommendations