Advertisement

Abstract

This work presents an approach to deal with uncertainty in patient’s medical record. After giving a brief characterisation of possible sources of uncertainty in medical records, the paper introduces fuzzy set based approach that allows modelling of such information. First, heterogeneous data is converted to homogeneous model with the use of Feature Set structure. With such model uncertainty may be represented directly as Fuzzy Membership Function Families (FMFFs). Some theoretical results connecting FMFFs with Hesitant Fuzzy Sets and Type-2 Fuzzy Sets are also given.

Keywords

Medical data Hesitant Fuzzy Sets Imperfect information 

Notes

Acknowledgments

This work was supported by the Polish National Science Centre grant number 2016/21/N/ST6/00316.

References

  1. 1.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  3. 3.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Studies in Fuzziness and Soft Computing, vol. 35. Physica-Verlag, Heidelberg (1999)zbMATHGoogle Scholar
  4. 4.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)zbMATHGoogle Scholar
  5. 5.
    John, R.: Type 2 fuzzy sets: an appraisal of theory and applications. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(6), 563–576 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Couso, I., Sánchez, L.: Machine learning models, epistemic set-valued data and generalized loss functions: an encompassing approach. Inf. Sci. 358, 129–150 (2016)CrossRefGoogle Scholar
  9. 9.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedregal, B., Montero, J., Hagras, H., Herrera, F., De Baets, B.: A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24(1), 179–194 (2016)CrossRefGoogle Scholar
  10. 10.
    Grattan-Guinness, I.: Fuzzy membership mapped onto intervals and many-valued quantities. Math. Log. Q. 22(1), 149–160 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zadeh, L.A.: Quantitative fuzzy semantics. Inf. Sci. 3(2), 159–176 (1971)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Żywica, P., Wójtowicz, A., et al.: Improving medical decisions under incomplete data using interval-valued fuzzy aggregation. In: Proceedings of 9th European Society for Fuzzy Logic and Technology (EUSFLAT), Gijón, Spain, pp. 577–584 (2015)Google Scholar
  13. 13.
    Stachowiak, A., Żywica, P., Dyczkowski, K., Wójtowicz, A.: An interval-valued fuzzy classifier based on an uncertainty-aware similarity measure. In: Angelov, P., et al. (eds.) Intelligent Systems 2014. AISC, vol. 322, pp. 741–751. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-11313-5_65CrossRefGoogle Scholar
  14. 14.
    Żywica, P., Dyczkowski, K., Wójtowicz, A., Stachowiak, A., Szubert, S., Moszyński, R.: Development of a fuzzy-driven system for ovarian tumor diagnosis. Biocybern. Biomed. Eng. 36(4), 632–643 (2016)CrossRefGoogle Scholar
  15. 15.
    Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90(2), 141–150 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moszyński, R., Żywica, P., et al.: Menopausal status strongly influences the utility of predictive models in differential diagnosis of ovarian tumors: an external validation of selected diagnostic tools. Ginekol. Pol. 85(12), 892–899 (2014)CrossRefGoogle Scholar
  17. 17.
    Wójtowicz, A., Żywica, P., et al.: Dealing with uncertainty in ovarian tumor diagnosis. In: Atanassov, K., Homenda, W., et al. (eds.) Modern Approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Volume II: Applications, SRI PAS, Warsaw, pp. 151–158 (2014)Google Scholar
  18. 18.
    Wójtowicz, A., Żywica, P., et al.: Solving the problem of incomplete data in medical diagnosis via interval modeling. Appl. Soft Comput. 47, 424–437 (2016)CrossRefGoogle Scholar
  19. 19.
    Żywica, P.: Similarity measures of interval–valued fuzzy sets in classification of uncertain data. Applications in Ovarian Tumor Diagnosis, Ph.D. thesis, Faculty of Mathematics and Computer Science of Adam Mickiewicz University, in Polish, June 2016Google Scholar
  20. 20.
    Dyczkowski, K.: Intelligent Medical Decision Support System Based on Imperfect Information. SCI, vol. 735. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-67005-8CrossRefGoogle Scholar
  21. 21.
    Mendel, J.M.: Tutorial on the uses of the interval type-2 fuzzy set’s Wavy Slice Representation Theorem. In: Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), New York City, USA, pp. 1–6 (2008)Google Scholar
  22. 22.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)CrossRefGoogle Scholar
  23. 23.
    Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theor. 14(1), 55–63 (1968)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceAdam Mickiewicz University in PoznańPoznańPoland

Personalised recommendations