Advertisement

Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems

  • Yuriy P. Kondratenko
  • Oleksiy V. Kozlov
  • Oleksiy V. Korobko
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 854)

Abstract

This paper presents two modifications of the method of synthesis and optimization of rule bases (RB) of fuzzy systems (FS) for decision making and control of complex technical objects under conditions of uncertainty. To illustrate the advantages of the proposed method, the development of the RB of Mamdani type fuzzy controller (FC) for the automatic control system (ACS) of the reactor temperature of the experimental specialized pyrolysis plant (SPP) is carried out. The efficiency of the presented method of synthesis and optimization of the FS RB is investigated and its comparison with the other existing methods is carried out on the basis of this FC. Analysis of simulation results confirms the high efficiency of the proposed by the authors method of synthesis and reduction of the FS RB.

Keywords

Fuzzy controller Rule base Synthesis Optimization Pyrolysis reactor Fuzzy control Decision making systems 

Notes

Acknowledgment

Prof. Dr.Sc. Yuriy P. Kondratenko thanks the Fulbright Scholar Program for the possibility to conduct research in USA, Cleveland State University, 2015–2016.

References

  1. 1.
    Mehta, B.R., Reddy, Y.J.: Chapter 7 - SCADA systems. In: Industrial Process Automation Systems, pp. 237–300 (2015)CrossRefGoogle Scholar
  2. 2.
    Kondratenko, Y.P., Kozlov, O.V., Korobko, O.V., Topalov, A.M.: Internet of things approach for automation of the complex industrial systems. In: Ermolayev, V. et al. (eds.) Proceedings of the 13th International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications. Integration, Harmonization and Knowledge Transfer, ICTERI 2017, CEUR-WS, Kyiv, Ukraine, vol. 1844, pp. 3–18 (2017)Google Scholar
  3. 3.
    Xiao, Z., Guo, J., Zeng, H., Zhou, P., Wang, S.: Application of fuzzy neural network controller in hydropower generator unit. J. Kybern. 38(10), 1709–1717 (2009).  https://doi.org/10.1108/03684920910994079CrossRefzbMATHGoogle Scholar
  4. 4.
    Hayajneh, M.T., Radaideh, S.M., Smadi, I.A.: Fuzzy logic controller for overhead cranes. Eng. Comput. 23(1), 84–98 (2006).  https://doi.org/10.1108/02644400610638989CrossRefzbMATHGoogle Scholar
  5. 5.
    Topalov, A., Kozlov, O., Kondratenko, Y.: Control processes of floating docks based on SCADA systems with wireless data transmission. In: Perspective Technologies and Methods in MEMS Design: Proceedings of the International Conference MEMSTECH 2016, Lviv-Poljana, Ukraine, pp. 57–61 (2016).  https://doi.org/10.1109/memstech.2016.7507520
  6. 6.
    Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.): Recent Developments and New Directions in Soft Computing. SFSC, vol. 317. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06323-2CrossRefzbMATHGoogle Scholar
  7. 7.
    Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.): Advance Trends in Soft Computing. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03674-8CrossRefGoogle Scholar
  8. 8.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1996)Google Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  10. 10.
    Zadeh, L.A.: The role of fuzzy logic in modeling, identification and control. Model. Identif. Control 15(3), 191–203 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Piegat, A.: Fuzzy Modeling and Control, vol. 69. Physica-Verlag, Heidelberg (2013).  https://doi.org/10.1007/978-3-7908-1824-6CrossRefzbMATHGoogle Scholar
  12. 12.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)CrossRefGoogle Scholar
  13. 13.
    Hampel, R., Wagenknecht, M., Chaker, N. (eds.): Fuzzy Control: Theory and Practice, p. 410. Physica-Verlag, Heidelberg (2000).  https://doi.org/10.1007/978-3-7908-1841-3CrossRefGoogle Scholar
  14. 14.
    Merigo, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015)CrossRefGoogle Scholar
  15. 15.
    Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy control. Springer Science & Business Media, Berlin (2013).  https://doi.org/10.1007/978-3-662-03284-8CrossRefzbMATHGoogle Scholar
  16. 16.
    Suna, Q., Li, R., Zhang, P.: Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model. J. Fuzzy Sets Syst. 133, 1–17 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Oh, S.K., Pedrycz, W.: The design of hybrid fuzzy controllers based on genetic algorithms and estimation techniques. J. Kybern. 31(6), 909–917 (2002)CrossRefGoogle Scholar
  18. 18.
    Lodwick, W.A., Kacprzhyk, J. (eds.): Fuzzy Optimization. STUDFUZ, vol. 254. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13935-2CrossRefzbMATHGoogle Scholar
  19. 19.
    Kondratenko, Y.P., Al Zubi, E.Y.M.: The optimization approach for increasing efficiency of digital fuzzy controllers. In: Annals of DAAAM for 2009 and Proceeding of the 20th International DAAAM Symposium on Intelligent Manufacturing and Automation, pp. 1589–1591 (2009)Google Scholar
  20. 20.
    Kondratenko, Y., Simon, D.: Structural and parametric optimization of fuzzy control and decision making systems. In: Zadeh, L., Yager, R.R., Shahbazova, S.N., Reformat, M.Z., Kreinovich, V. (eds.) Recent Developments and the New Direction in Soft-Computing Foundations and Applications. STUDFUZZ, vol. 361. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-75408-6CrossRefGoogle Scholar
  21. 21.
    Rotshtein, A.P., Rakytyanska, H.B.: Fuzzy evidence in identification, forecasting and diagnosis, vol. 275. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25786-5CrossRefzbMATHGoogle Scholar
  22. 22.
    Simon, D.: H∞ estimation for fuzzy membership function optimization. Int. J. Approx. Reason. 40, 224–242 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kondratenko, Y., Korobko, V., Korobko, O., Kondratenko, G., Kozlov, O.: Green-IT approach to design and optimization of thermoacoustic waste heat utilization plant based on soft computing. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Components, Networks and Systems Implementation. SSDC, vol. 105, pp. 287–311. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55595-9_14CrossRefGoogle Scholar
  24. 24.
    Simon, D.: Design and rule base reduction of a fuzzy filter for the estimation of motor currents. Int. J. Approx. Reason. 25, 145–167 (2000)CrossRefGoogle Scholar
  25. 25.
    Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Attribute and size reduction mechanisms in multi-adjoint concept lattices. J. Comput. Appl. Math. 318, 388–402 (2017).  https://doi.org/10.1016/j.cam.2016.07.012MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Julián-Iranzo, P., Medina, J., Ojeda-Aciego, M.: On reductants in the framework of multi-adjoint logic programming. Fuzzy Sets Syst. 317, 27–43 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Koczy, L.T., Hirota, K.: Size reduction by interpolation in fuzzy rule bases. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 27(1), 14–25 (1997)CrossRefGoogle Scholar
  28. 28.
    Alcalá, R., Alcalá-Fdez, J., Gacto, M.J., Herrera, F.: Rule base reduction and genetic tuning of fuzzy systems based on the linguistic 3-tuples representation. Soft. Comput. 11(5), 401–419 (2007).  https://doi.org/10.1007/s00500-006-0106-2CrossRefzbMATHGoogle Scholar
  29. 29.
    Pedrycz, W., Li, K., Reformat, M.: Evolutionary reduction of fuzzy rule-based models. In: Tamir, D.E., Rishe, N.D., Kandel, A. (eds.) Fifty Years of Fuzzy Logic and its Applications. SFSC, vol. 326, pp. 459–481. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19683-1_23CrossRefGoogle Scholar
  30. 30.
    Simon, D.: Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  31. 31.
    Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst. 141(1), 59–88 (2004).  https://doi.org/10.1016/S0165-0114(03)00114-3CrossRefzbMATHGoogle Scholar
  32. 32.
    Von Altrock, C.: Applying fuzzy logic to business and finance. Optimus 2, 38–39 (2002)Google Scholar
  33. 33.
    Von Altrock, C.: Fuzzy Logic and Neurofuzzy Applications in Business and Finance. Prentice Hall, NJ (1996)Google Scholar
  34. 34.
    Kondratenko, Y.P., Kozlov, O.V., Gerasin, O.S., Topalov, A.M., Korobko, O.V.: Automation of control processes in specialized pyrolysis complexes based on web SCADA systems. In: Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, vol. 1, pp. 107–112 (2017).  https://doi.org/10.1109/idaacs.2017.8095059
  35. 35.
    Kondratenko, Y.P., Kozlov, O.V.: Mathematic modeling of reactor’s temperature mode of multiloop pyrolysis plant. In: Engemann, K.J., Gil-Lafuente, A.M., Merigó, J.M. (eds.) MS 2012. LNBIP, vol. 115, pp. 178–187. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30433-0_18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intelligent Information Systems DepartmentPetro Mohyla Black Sea National UniversityMykolaivUkraine
  2. 2.Computerized Control Systems DepartmentAdmiral Makarov National University of ShipbuildingMykolaivUkraine

Personalised recommendations