A Comparison of Characteristic Sets and Generalized Maximal Consistent Blocks in Mining Incomplete Data

  • Patrick G. Clark
  • Cheng Gao
  • Jerzy W. Grzymala-BusseEmail author
  • Teresa Mroczek
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 854)


We discuss two interpretations of missing attribute values, lost values and “do not care” conditions. Both interpretations may be used for data mining based on characteristic sets. On the other hand, maximal consistent blocks were originally defined for incomplete data sets with “do not care” conditions, using only lower and upper approximations. We extended definitions of maximal consistent blocks to both interpretations while using probabilistic approximations, a generalization of lower and upper approximations. Our main objective is to compare approximations based on characteristic sets with approximations based on maximal consistent blocks in terms of an error rate.


Incomplete data mining Characteristic sets Maximal consistent blocks Rough set theory Probabilistic approximations 


  1. 1.
    Clark, P.G., Gao, C., Grzymala-Busse, J.W., Mroczek, T.: Characteristic sets and generalized maximal consistent blocks in mining incomplete data. In: Polkowski, L., Yao, Y., Artiemjew, P., Ciucci, D., Liu, D., Ślęzak, D., Zielosko, B. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10313, pp. 477–486. Springer, Cham (2017). Scholar
  2. 2.
    Clark, P.G., Grzymala-Busse, J.W.: Experiments on probabilistic approximations. In: Proceedings of the 2011 IEEE International Conference on Granular Computing, pp. 144–149 (2011)Google Scholar
  3. 3.
    Clark, P.G., Grzymala-Busse, J.W., Rzasa, W.: Mining incomplete data with singleton, subset and concept approximations. Inf. Sci. 280, 368–384 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Grzymala-Busse, J.W.: MLEM2: a new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 243–250 (2002)Google Scholar
  5. 5.
    Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Notes of the Workshop on Foundations and New Directions of Data Mining, in Conjunction with the Third International Conference on Data Mining, pp. 56–63 (2003)Google Scholar
  6. 6.
    Grzymala-Busse, J.W.: Three approaches to missing attribute values–a rough set perspective. In: Proceedings of the Workshop on Foundation of Data Mining, in Conjunction with the Fourth IEEE International Conference on Data Mining, pp. 55–62 (2004)Google Scholar
  7. 7.
    Grzymała-Busse, J.W.: Generalized parameterized approximations. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 136–145. Springer, Heidelberg (2011). Scholar
  8. 8.
    Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining: Opportunities and Challenges, pp. 142–173. Idea Group Publishing, Hershey (2003)CrossRefGoogle Scholar
  9. 9.
    Leung, Y., Li, D.: Maximal consistent block technique for rule acquisition in incomplete information systems. Inf. Sci. 153, 85–106 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leung, Y., Wu, W., Zhang, W.: Knowledge acquisition in incomplete information systems: a rough set approach. Eur. J. Oper. Res. 168, 164–180 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liang, J.Y., Wang, B.L., Qian, Y.H., Li, D.Y.: An algorithm of constructing maximal consistent blocks in incomplete information systems. Int. J. Comput. Sci. Knowl. Eng. 2(1), 11–18 (2008)Google Scholar
  12. 12.
    Liu, X., Shao, M.: Approachs to computing maximal consistent block. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds.) ICMLC 2014. CCIS, vol. 481, pp. 264–274. Springer, Heidelberg (2014). Scholar
  13. 13.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177, 28–40 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Int. J. Man Mach. Stud. 29, 81–95 (1988)CrossRefGoogle Scholar
  15. 15.
    Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approx. Reason. 40, 81–91 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wong, S.K.M., Ziarko, W.: INFER–an adaptive decision support system based on the probabilistic approximate classification. In: Proceedings of the 6th International Workshop on Expert Systems and their Applications, pp. 713–726 (1986)Google Scholar
  17. 17.
    Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)CrossRefGoogle Scholar
  18. 18.
    Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)CrossRefGoogle Scholar
  19. 19.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ziarko, W.: Probabilistic approach to rough sets. Int. J. Approx. Reason. 49, 272–284 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patrick G. Clark
    • 1
  • Cheng Gao
    • 1
  • Jerzy W. Grzymala-Busse
    • 1
    • 2
    Email author
  • Teresa Mroczek
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of KansasLawrenceUSA
  2. 2.Department of Expert Systems and Artificial IntelligenceUniversity of Information Technology and ManagementRzeszowPoland

Personalised recommendations