Advertisement

Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean

  • Gleb Beliakov
  • Marek Gagolewski
  • Simon James
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 854)

Abstract

We look at different approaches to learning the weights of the weighted arithmetic mean such that the median residual or sum of the smallest half of squared residuals is minimized. The more general problem of multivariate regression has been well studied in statistical literature, however in the case of aggregation functions we have the restriction on the weights and the domain is also usually restricted so that ‘outliers’ may not be arbitrarily large. A number of algorithms are compared in terms of accuracy and speed. Our results can be extended to other aggregation functions.

Keywords

Aggregation functions Robust statistics Least median of squares fitting Least trimmed squares fitting 

References

  1. 1.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73721-6CrossRefzbMATHGoogle Scholar
  2. 2.
    Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160, 65–75 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-24753-3CrossRefGoogle Scholar
  4. 4.
    Gagolewski, M.: Data Fusion: Theory, Methods and Applications. Institute of Computer Science, Polish Academy of Sciences, Warsaw (2015)Google Scholar
  5. 5.
    Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871–880 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017)Google Scholar
  7. 7.
    Dallal, G.E., Rousseeuw, P.J.: LMSMVE: a program for least median of squares regression and robust distances. Comput. Biomed. Res. 25, 384–391 (1992)CrossRefGoogle Scholar
  8. 8.
    Rousseeuw, P.J., Hubert, M.: Recent developments in PROGRESS. In: \(L_1\)-Statistical Procedures and Related Topics. IMS Lecture Notes - Monograph Series, vol. 31, pp. 201–214 (1997)Google Scholar
  9. 9.
    Farebrother, R.W.: The least median of squared residuals procedure. In: Farebrother, R.W. (ed.) \(L_1\)-Norm and \(L_\infty \)-Norm Estimation. BRIEFSSTATIST, pp. 37–41. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36300-9_6CrossRefGoogle Scholar
  10. 10.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  11. 11.
    Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-68791-7CrossRefzbMATHGoogle Scholar
  12. 12.
    Beliakov, G., James, S.: Citation-based journal ranks: the use of fuzzy measures. Fuzzy Sets Syst. 167, 101–119 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Beliakov, G., James, S.: Using linear programming for weights identification of generalized Bonferroni means in R. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 35–44. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34620-0_5CrossRefGoogle Scholar
  14. 14.
    Bloomfield, P., Steiger, W.: Least Absolute Deviations: Theory Applications and Algorithms. Birkhauser, Basel (1983)zbMATHGoogle Scholar
  15. 15.
    Bartoszuk, M., Beliakov, G., Gagolewski, M., James, S.: Fitting aggregation functions to data: part I - linearization and regularization. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp. 767–779. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40581-0_62CrossRefGoogle Scholar
  16. 16.
    Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis. MAIA, vol. 275, pp. 51–67. Kluwer Academic, Dordrecht (1994).  https://doi.org/10.1007/978-94-015-8330-5_4CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information TechnologyDeakin UniversityBurwoodAustralia
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  3. 3.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations