Reinterpreting Interpretability for Fuzzy Linguistic Descriptions of Data

  • A. Ramos-Soto
  • M. Pereira-Fariña
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 853)


We approach the problem of interpretability for fuzzy linguistic descriptions of data from a natural language generation perspective. For this, first we review the current state of linguistic descriptions of data and their use contexts as a standalone tool and as part of a natural language generation system. Then, we discuss the standard approach to interpretability for linguistic descriptions and introduce our complementary proposal, which describes the elements from linguistic descriptions of data that can influence and improve the interpretability of automatically generated texts (such as fuzzy properties, quantifiers, and truth degrees), when linguistic descriptions are used to determine relevant content within a text generation system.


Fuzzy sets Linguistic summarization Fuzzy linguistic descriptions of data Interpretability Natural language generation Data-to-text 



This work has been funded by TIN2014-56633-C3-1-R and TIN2014-56633-C3-3-R projects from the Spanish “Ministerio de Economía y Competitividad” and by the “Consellería de Cultura, Educación e Ordenación Universitaria” (accreditation 2016–2019, ED431G/08) and the European Regional Development Fund (ERDF). A. Ramos-Soto is funded by the “Consellería de Cultura, Educación e Ordenación Universitaria” (under the Postdoctoral Fellowship accreditation ED481B 2017/030). M. Pereira-Fariña is funded by the “Consellería de Cultura, Educación e Ordenación Universitaria” (under the Postdoctoral Fellowship accreditation ED481B 2016/048-0).


  1. 1.
    Márquez, A., Márquez, F.A., Peregrín, A.: A mechanism to improve the interpretability of linguistic fuzzy systems with adaptive defuzzification based on the use of a multi-objective evolutionary algorithm. Int. J. Comput. Intell. Syst. 5(2), 297–321 (2012)CrossRefGoogle Scholar
  2. 2.
    Boran, F.E., Akay, D., Yager, R.R.: An overview of methods for linguistic summarization with fuzzy sets. Expert Syst. Appl. 61, 356–377 (2016)CrossRefGoogle Scholar
  3. 3.
    Delgado, M., Ruiz, M.D., Sánchez, D., Vila, M.A.: Fuzzy quantification: a state of the art. Fuzzy Sets Syst. 242, 1–30 (2014). Theme: Quantifiers and LogicMathSciNetCrossRefGoogle Scholar
  4. 4.
    Díaz-Hermida, F., Losada, D.E., Bugarín, A., Barro, S.: A probabilistic quantifier fuzzification mechanism: the model and its evaluation for information retrieval. IEEE Trans. Fuzzy Syst. 13(1), 688–700 (2005)CrossRefGoogle Scholar
  5. 5.
    Diaz-Hermida, F., Pereira-Fariña, M., Vidal, J.C., Ramos-Soto, A.: Characterizing quantifier fuzzification mechanisms: a behavioral guide for applications. Fuzzy Sets Syst. (2017).
  6. 6.
    Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kacprzyk, J.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries, and natural-language generation. IEEE Trans. Fuzzy Syst. 18(3), 451–472 (2010)CrossRefGoogle Scholar
  8. 8.
    Lesot, M.J., Moyse, G., Bouchon-Meunier, B.: Interpretability of fuzzy linguistic summaries. Fuzzy Sets Syst. 292, 307–317 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liétard, L.: A functional interpretation of linguistic summaries of data. Inf. Sci. 188, 1–16 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marín, N., Sánchez, D.: On generating linguistic descriptions of time series. Fuzzy Sets Syst. 285, 6–30 (2016). Special Issue on Linguistic Description of Time SeriesMathSciNetCrossRefGoogle Scholar
  11. 11.
    Pancho, D.P., Alonso, J.M., Cordón, O., Quirin, A., Magdalena, L.: FINGRAMS: visual representations of fuzzy rule-based inference for expert analysis of comprehensibility. IEEE Trans. Fuzzy Syst. 21(6), 1133–1149 (2013)CrossRefGoogle Scholar
  12. 12.
    Pancho, D.P., Alonso, J.M., Magdalena, L.: Enhancing fingrams to deal with precise fuzzy systems. Fuzzy Sets Syst. 297(Supplement C), 1–25 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ramos-Soto, A., Bugarín, A., Barro, S.: Fuzzy sets across the natural language generation pipeline. Prog. Artif. Intell. 5(4), 261–276 (2016). Scholar
  14. 14.
    Ramos-Soto, A., Bugarín, A., Barro, S.: On the role of linguistic descriptions of data in the building of natural language generation systems. Fuzzy Sets Syst. 285, 31–51 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ramos-Soto, A., Bugarín, A., Barro, S., Taboada, J.: Linguistic descriptions for automatic generation of textual short-term weather forecasts on real prediction data. IEEE Trans. Fuzzy Syst. 23(1), 44–57 (2015)CrossRefGoogle Scholar
  16. 16.
    Reiter, E.: An architecture for data-to-text systems. In: Busemann, S. (ed.) Proceedings of the 11th European Workshop on Natural Language Generation, pp. 97–104 (2007).
  17. 17.
    Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28(1), 69–86 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zadeh, L.A.: A computational theory of dispositions. Int. J. Intell. Syst. 2(1), 39–63 (1987)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Singular en Investigación en Tecnoloxías da Información (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Computing ScienceUniversity of AberdeenAberdeenUK
  3. 3.Departamento de Filosofía e AntropoloxíaUniversidade de Santiago de CompostelaSantiagoSpain
  4. 4.Centre for Argument Technology (ARG-tech)University of DundeeDundeeUK

Personalised recommendations