Advertisement

Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals

  • Quentin BrabantEmail author
  • Miguel Couceiro
  • Didier Dubois
  • Henri Prade
  • Agnès Rico
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 853)

Abstract

Sugeno integrals are qualitative aggregation functions. They are used in multiple criteria decision making and decision under uncertainty, for computing global evaluations of items, based on local evaluations. The combination of a Sugeno integral with unary order preserving functions on each criterion is called a Sugeno utility functionals (SUF). A noteworthy property of SUFs is that they represent multi-threshold decision rules, while Sugeno integrals represent single-threshold ones. However, not all sets of multi-threshold rules can be represented by a single SUF. In this paper, we consider functions defined as the minimum or the maximum of several SUFs. These max-SUFs and min-SUFs can represent all functions that can be described by a set of multi-threshold rules, i.e., all order-preserving functions on finite scales. We study their potential advantages as a compact representation of a big set of rules, as well as an intermediary step for extracting rules from empirical datasets.

Keywords

Sugeno integral Sugeno utility functional Piecewise unary function Decision rules Qualitative representation 

Notes

Acknowledgements

This work has been partially supported by the Labex ANR-11-LABX-0040-CIMI (Centre International de Mathématiques et d’Infor-matique) in the setting of the program ANR-11-IDEX-0002-02, subproject ISIPA (Interpolation, Sugeno Integral, Proportional Analogy).

References

  1. 1.
    Blaszczynski, J., Slowinski, R., Szelag, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf. Sci. 181, 987–1002 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cao-Van, K.: Supervised ranking - from semantics to algorithms. Ph.D. thesis, Ghent University, CS Department (2003)Google Scholar
  3. 3.
    Couceiro, M., Dubois, D., Prade, H., Rico, A.: Enhancing the expressive power of Sugeno integrals for qualitative data analysis. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 641, pp. 534–547. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66830-7_48CrossRefGoogle Scholar
  4. 4.
    Couceiro, M., Dubois, D., Prade, H., Waldhauser, T.: Decision making with Sugeno integrals. Bridging the gap between multicriteria evaluation and decision under uncertainty. Order 33(3), 517–535 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Couceiro, M., Marichal, J.-L.: Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices. Fuzzy Sets Syst. 161(5), 694–707 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Couceiro, M., Waldhauser, T.: Pseudo-polynomial functions over finite distributive lattices. Fuzzy Sets Syst. 239, 21–34 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dubois, D., Marichal, J.-L., Prade, H., Roubens, M., Sabbadin, R.: The use of the discrete Sugeno integral in decision making: a survey. Int. J. Uncertain. Fuzz. 9, 539–561 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H., Rico, A.: The logical encoding of Sugeno integrals. Fuzzy Sets Syst. 241, 61–75 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Theory and Applications. Physica-verlag, Berlin (2000)zbMATHGoogle Scholar
  10. 10.
    Greco, S., Matarazzo, B., Slowinski, R.: Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. Eur. J. Oper. Res. 158, 271–292 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Marichal, J.-L.: On Sugeno integrals as an aggregation function. Fuzzy Sets Syst. 114(3), 347–365 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sugeno, M.: Fuzzy measures and fuzzy integrals: a survey. In: Gupta, M.M., et al. (eds.) Fuzzy Automata and Decision Processes, North-Holland, pp. 89–102 (1977)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Quentin Brabant
    • 1
    Email author
  • Miguel Couceiro
    • 1
  • Didier Dubois
    • 2
  • Henri Prade
    • 2
  • Agnès Rico
    • 3
  1. 1.Université de Lorraine, CNRS, Inria, LORIANancyFrance
  2. 2.IRIT, CNRS & Université Paul SabatierToulouseFrance
  3. 3.ERIC & Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations