Advertisement

Publishing Graph Node Strength Histogram with Edge Differential Privacy

  • Qing Qian
  • Zhixu Li
  • Pengpeng Zhao
  • Wei Chen
  • Hongzhi Yin
  • Lei ZhaoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10828)

Abstract

Protecting the private graph data while releasing accurate estimate of the data is one of the most challenging problems in data privacy. Node strength combines the topological information with the weight distribution of the weighted graph in a natural way. Since an edge in graph data oftentimes represents relationship between two nodes, edge-differential privacy (edge-DP) can protect relationship between two entities from being disclosed. In this paper, we investigate the problem of publishing the node strength histogram of a private graph under edge-DP. We propose two clustering approaches based on sequence-aware and local density to aggregate histogram. Our experimental study demonstrates that our approaches can greatly reduce the error of approximating the true node strength histogram.

Keywords

Differential privacy Node strength Histogram publishing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61572335, 61572336, 61472263, 61402312 and 61402313, the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20151223, and Collaborative Innovation Center of Novel Software Technology and Industrialization, Jiangsu, China.

References

  1. 1.
    Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.W.: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation. ACM Trans. Inf. Syst. 35(2), 11:1–11:44 (2016)CrossRefGoogle Scholar
  2. 2.
    Yin, H., Chen, H., Sun, X., Wang, H., Wang, Y., Nguyen, Q.V.H.: SPTF: a scalable probabilistic tensor factorization model for semantic-aware behavior prediction. In: ICDM, pp. 585–594 (2017)Google Scholar
  3. 3.
    Yin, H., Cui, B.: Spatio-Temporal Recommendation in Social Media. Springer Briefs in Computer Science. Springer, Singapore (2016).  https://doi.org/10.1007/978-981-10-0748-4CrossRefGoogle Scholar
  4. 4.
    Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Hung, N.Q.V.: Adapting to user interest drift for POI recommendation. IEEE Trans. Knowl. Data Eng. 28(10), 2566–2581 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhao, Y., Zhang, Z., Wang, Y., Liu, J.: Robust mobile spamming detection via graph patterns. In: ICPR, pp. 983–986 (2012)Google Scholar
  6. 6.
    Thedchanamoorthy, G., Piraveenan, M., Uddin, S., Senanayake, U.: Influence of vaccination strategies and topology on the herd immunity of complex networks. Soc. Netw. Anal. Min. 4(1), 213 (2014)CrossRefGoogle Scholar
  7. 7.
    Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: WWW, pp. 181–190 (2007)Google Scholar
  8. 8.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Symposium on Security and Privacy, pp. 173–187 (2009)Google Scholar
  9. 9.
    Proserpio, D., Goldberg, S., McSherry, F.: Calibrating data to sensitivity in private data analysis. PVLDB 7, 637–648 (2014)Google Scholar
  10. 10.
    Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Private release of graph statistics using ladder functions. In: SIGMOD, pp. 731–745 (2015)Google Scholar
  11. 11.
    Zhu, T., Li, G., Zhou, W., Yu, P.S.: Differentially private data publishing and analysis: a survey. IEEE Trans. Knowl. Data Eng. 29, 1619–1638 (2017)CrossRefGoogle Scholar
  12. 12.
    Hay, M., Li, C., Miklau, G., Jensen, D.D.: Accurate estimation of the degree distribution of private networks. In: ICDM, pp. 169–178 (2009)Google Scholar
  13. 13.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Day, W., Li, N., Lyu, M.: Publishing graph degree distribution with node differential privacy. In: SIGMOD, pp. 123–138 (2016)Google Scholar
  15. 15.
    Kasiviswanathan, S.P., Nissim, K., Raskhodnikova, S., Smith, A.: Analyzing graphs with node differential privacy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 457–476. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_26CrossRefGoogle Scholar
  16. 16.
    Stanford large network dataset collection. http://snap.stanford.edu/data/
  17. 17.
    Dwork, C.: Differential privacy. In: ICALP, pp. 1–12 (2006)Google Scholar
  18. 18.
    McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS, pp. 94–103 (2007)Google Scholar
  19. 19.
    McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: SIGMOD, pp. 19–30 (2009)Google Scholar
  20. 20.
    Kifer, D., Lin, B.: Towards an axiomatization of statistical privacy and utility. In: SIGMOD, pp. 147–158 (2010)Google Scholar
  21. 21.
    Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private histogram publication. VLDB 22(6), 797–822 (2013)CrossRefGoogle Scholar
  22. 22.
    Li, C., Hay, M., Miklau, G., Wang, Y.: A data- and workload-aware query answering algorithm for range queries under differential privacy. PVLDB 7(5), 341–352 (2014)Google Scholar
  23. 23.
    Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)CrossRefGoogle Scholar
  24. 24.
    Raskhodnikova, S., Smith, A.D.: Efficient lipschitz extensions for high-dimensional graph statistics and node private degree distributions. CoRR, abs/1504.07912 (2015)Google Scholar
  25. 25.
    Nissim, K., Raskhodnikova, S., Smith, A.D.: Smooth sensitivity and sampling in private data analysis. In: STOC, pp. 75–84 (2007)Google Scholar
  26. 26.
    Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: SIGCOMM, pp. 81–98 (2011)Google Scholar
  27. 27.
    Zhang, X., Chen, R., Xu, J., Meng, X., Xie, Y.: Towards accurate histogram publication under differential privacy. In: ICDM, pp. 587–595 (2014)Google Scholar
  28. 28.
    Qardaji, W.H., Yang, W., Li, N.: Understanding hierarchical methods for differentially private histograms. PVLDB 6(14), 1954–1965 (2013)Google Scholar
  29. 29.
    Ács, G., Castelluccia, C., Chen, R.: Differentially private histogram publishing through lossy compression. In: ICDM, pp. 1–10 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qing Qian
    • 1
  • Zhixu Li
    • 1
  • Pengpeng Zhao
    • 1
  • Wei Chen
    • 1
  • Hongzhi Yin
    • 2
  • Lei Zhao
    • 1
    Email author
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.The School of Information Technology and Electrical Engineering BrisbaneThe University of QueenslandSt LuciaAustralia

Personalised recommendations