Proof of Reputation: A Reputation-Based Consensus Protocol for Peer-to-Peer Network

  • Fangyu Gai
  • Baosheng Wang
  • Wenping DengEmail author
  • Wei Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10828)


The advent of blockchain sheds light on addressing trust issues of peer-to-peer networks by providing a distributed tamper-resistant ledger. Beyond cryptocurrencies, it is believed that blockchain can also be used to protect other properties such as reputation. Most of the existing studies of enhancing reputation systems using blockchains are built on top of the bitcoin-like blockchains, so they are inherently constrained by the low-efficiency and high-consumption of the underlying blockchain. To fill this gap, we present a reputation-based consensus protocol called Proof of Reputation (PoR), which guarantees the reliability and integrity of transaction outcomes in an efficient way. In PoR, we let reputation serves as the incentive for both good behavior and block publication instead of digital coins, therefore no miners are needed. We also implement a prototype and our scalability experiments show that our protocol can scale to over a thousand participants in a peer-to-peer network with throughput of hundreds of transactions per second.


Blockchain Consensus protocol Reputation system Peer-to-peer network 


  1. 1.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  2. 2.
    Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Sebastopol (2015)Google Scholar
  3. 3.
    Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An empirical study of Namecoin and lessons for decentralized namespace design. In: WEIS (2015)Google Scholar
  4. 4.
    Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 154–167. ACM (2016)Google Scholar
  5. 5.
    Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks. In: Proceedings of the 13th International Workshop on Network and Operating Systems Support for Digital Audio and Video, pp. 144–152. ACM (2003)Google Scholar
  6. 6.
    Selcuk, A.A., Uzun, E., Pariente, M.R.: A reputation-based trust management system for P2P networks. In: IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2004, pp. 251–258. IEEE (2004)Google Scholar
  7. 7.
    Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empirical analysis of ebay’s reputation system. In: The Economics of the Internet and E-Commerce, pp. 127–157. Emerald Group Publishing Limited (2002)Google Scholar
  8. 8.
    Dewan, P., Dasgupta, P.: Securing reputation data in peer-to-peer networks. In: Proceedings of International Conference on Parallel and Distributed Computing and Systems, PDCS (2004)Google Scholar
  9. 9.
    Shrier, D., Wu, W., Pentland, A.: Blockchain & infrastructure (identity, data security). Technical report (2016). Accessed 27 Nov 2016
  10. 10.
    Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In: Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P 2003), pp. 150–157. IEEE (2003)Google Scholar
  11. 11.
    Schiffner, S., Clauß, S., Steinbrecher, S.: Privacy, liveliness and fairness for reputation. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 506–519. Springer, Heidelberg (2011). Scholar
  12. 12.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for reputation management in P2P networks. In: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651. ACM (2003)Google Scholar
  13. 13.
    Carboni, D.: Feedback based reputation on top of the bitcoin blockchain. arXiv preprint arXiv:1502.01504 (2015)
  14. 14.
    Dennis, R., Owen, G.: Rep on the block: a next generation reputation system based on the blockchain. In: 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 131–138. IEEE (2015)Google Scholar
  15. 15.
    Dennis, R., Owenson, G.: Rep on the roll: a peer to peer reputation system based on a rolling blockchain. Int. J. Digit. Soc. (IJDS) 7(1), 1123–1134 (2016)Google Scholar
  16. 16.
    Buechler, M., Eerabathini, M., Hockenbrocht, C., Wan, D.: Decentralized reputation system for transaction networks. Technical report, University of Pennsylvania (2015)Google Scholar
  17. 17.
    Schaub, A., Bazin, R., Hasan, O., Brunie, L.: A trustless privacy-preserving reputation system. In: Hoepman, J.H., Katzenbeisser, S. (eds.) SEC 2016. IFIP AICT, vol. 471, pp. 398–411. Springer, Cham (2016). Scholar
  18. 18.
    Otte, P., de Vos, M., Pouwelse, J.: TrustChain: a Sybil-resistant scalable blockchain. Future Gener. Comput. Syst. (2017)Google Scholar
  19. 19.
    Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the HTTPS protocol. IEEE Secur. Priv. 7(1), 78–81 (2009)CrossRefGoogle Scholar
  20. 20.
    Sun, Y., Han, Z., Ray Liu, K.J.: Defense of trust management vulnerabilities in distributed networks. IEEE Commun. Mag. 46(2), 112–119 (2008)CrossRefGoogle Scholar
  21. 21.
    Dellarocas, C.: Mechanisms for coping with unfair ratings and discriminatory behavior in online reputation reporting systems. In: Proceedings of the Twenty-First International Conference on Information Systems, ICIS 2000, Brisbane, Australia, 10–13 December 2000, pp. 520–525 (2000)Google Scholar
  22. 22.
    Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). Scholar
  23. 23.
    Jøsang, A., Golbeck, J.: Challenges for robust trust and reputation systems. In: Proceedings of the 5th International Workshop on Security and Trust Management (SMT 2009), Saint Malo, France, p. 52 (2009)Google Scholar
  24. 24.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). Scholar
  25. 25.
    Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004). Scholar
  26. 26.
  27. 27.
  28. 28.
    Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–42. ACM (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fangyu Gai
    • 1
  • Baosheng Wang
    • 1
  • Wenping Deng
    • 1
    Email author
  • Wei Peng
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations