Advertisement

Modeling Travel Behavior Similarity with Trajectory Embedding

  • Wenyan Yang
  • Yan Zhao
  • Bolong Zheng
  • Guanfeng Liu
  • Kai Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

The prevalence of GPS-enabled devices and wireless communication technologies has led to myriads of spatial trajectories describing the movement history of moving objects. While a substantial research effort has been undertaken on the spatio-temporal features of trajectory data, recent years have witnessed the flourish of location-based web applications (i.e., Foursquare, Facebook), enriching the traditional trajectory data by associating locations with activity information, called activity trajectory. These trajectory data contain a wealth of activity information and offer unprecedented opportunities for heightening our understanding about human behaviors. In this paper, we propose a novel framework, called TEH (Trajectory Embedding and Hashing), to mine the similarity among users based on their activity trajectories. Such user similarity is of great importance for individuals to effectively retrieve the information with high relevance. With the time being separated into several slots according to the activity-based temporal distribution, we utilize trajectory embedding technique to mine the sequence property of the activity trajectories by treating them as paragraphs. Then a hash-based method is presented to reduce the dimensions for improving the efficiency of users’ similarity calculation. Finally, extensive experiments on a real activity trajectory dataset demonstrate the effectiveness and efficiency of the proposed methods.

Keywords

Activity trajectory User similarity Trajectory embedding 

Notes

Acknowledgement

This research is partially supported by the Natural Science Foundation of China (Grant Nos. 61502324, 61532018).

References

  1. 1.
    Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.R.: Discovery of path nearby clusters in spatial networks. TKDE 27(6), 1505–1518 (2015)Google Scholar
  2. 2.
    Hung, C.-C., Peng, W.-C., Lee, W.-C.: Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 24(2), 169–192 (2015)CrossRefGoogle Scholar
  3. 3.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)Google Scholar
  4. 4.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)CrossRefGoogle Scholar
  5. 5.
    Su, H., Zheng, K., Zeng, K., Huang, J., Sadiq, S., Yuan, N.J., Zhou, X.: Making sense of trajectory data: a partition-and-summarization approach. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 963–974. IEEE (2015)Google Scholar
  6. 6.
    Kai, Z., Zheng, B., Xu, J., Liu, G., An, L., Li, Z.: Popularity-aware spatial keyword search on activity trajectories. WWWJ 20(4), 1–25 (2016)Google Scholar
  7. 7.
    Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE, pp. 230–241 (2013)Google Scholar
  8. 8.
    Lv, M., Chen, L., Chen, G.: Mining user similarity based on routine activities. Inf. Sci. 236(1), 17–32 (2013)CrossRefGoogle Scholar
  9. 9.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Building personal maps from GPS data. Ann. N. Y. Acad. Sci. 1093(1), 249 (2006)CrossRefGoogle Scholar
  10. 10.
    Liao, L., Fox, D., Kautz, H.: Learning and inferring transportation routines. In: AAAI, pp. 348–353 (2004)Google Scholar
  11. 11.
    Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT, pp. 156–167 (2012)Google Scholar
  12. 12.
    Su, H., Zheng, K., Huang, J., Wang, H., Zhou, X.: Calibrating trajectory data for spatio-temporal similarity analysis. VLDB J. 24(1), 93–116 (2015)CrossRefGoogle Scholar
  13. 13.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. TKDE 26(8), 1974–1988 (2014)Google Scholar
  14. 14.
    Chen, X., Lu, R., Ma, X., Pang, J.: Measuring user similarity with trajectory patterns: principles and new metrics. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 437–448. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11116-2_38CrossRefGoogle Scholar
  15. 15.
    Li, W., Jiang, J., Li, G.: Mining user similarity based on users trajectories. In: ICCCBDA, pp. 557–562 (2014)Google Scholar
  16. 16.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, p. 2246 (1999)Google Scholar
  17. 17.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: IEEE, pp. 423–434, May 2015Google Scholar
  18. 18.
    Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., Li, G.: Keyword-aware continuous KNN query on road networks. In: ICDE, pp. 871–882 (2016)Google Scholar
  19. 19.
    Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route search on road networks. TKDE 29(9), 1846–1859 (2017)Google Scholar
  20. 20.
    Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: SharkDB: an in-memory column-oriented trajectory storage. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, pp. 1409–1418. ACM (2014)Google Scholar
  21. 21.
    Zheng, K., Zhou, X., Fung, P.C., Xie, K.: Spatial query processing for fuzzy objects. VLDB J. 21, 1–23 (2012)CrossRefGoogle Scholar
  22. 22.
    Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)CrossRefGoogle Scholar
  23. 23.
    Zheng, B., Yuan, N.J., Zheng, K., Xie, X., Sadiq, S., Zhou, X.: Approximate keyword search in semantic trajectory database. In: ICDE, pp. 975–986 (2015)Google Scholar
  24. 24.
    Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity based on location history. In: ACM SIGSPATIAL, p. 34 (2008)Google Scholar
  25. 25.
    Lee, M.-J., Chung, C.-W.: A user similarity calculation based on the location for social network services. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 38–52. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20149-3_5CrossRefGoogle Scholar
  26. 26.
    Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. Computer Science (2013)Google Scholar
  27. 27.
    Collobert, R., Weston, J., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(1), 2493–2537 (2011)MATHGoogle Scholar
  28. 28.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. Computer Science (2013)Google Scholar
  29. 29.
    Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML 2014, vol. 32, pp. II-1188–II-1196 (2014)Google Scholar
  30. 30.
    Tagami, Y., Kobayashi, H., Ono, S., Tajima, A.: Modeling user activities on the web using paragraph vector. In: International Conference on World Wide Web, pp. 125–126 (2015)Google Scholar
  31. 31.
    Zhao, Y., Wang, J., Wang, F.Y., Shi, X., Lv, Y.: Paragraph vector based retrieval model for similar cases recommendation. In: Intelligent Control and Automation, pp. 2220–2225 (2016)Google Scholar
  32. 32.
    Zhang, C., Liu, L., Lei, D., Yuan, Q., Zhuang, H., Hanratty, T., Han, J.: TrioVecEvent: embedding-based online local event detection in geo-tagged tweet streams. In: ACM SIGKDD, pp. 595–604 (2017)Google Scholar
  33. 33.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)Google Scholar
  34. 34.
    Heo, J.P., Lee, Y., He, J., Chang, S.F.: Spherical hashing. In: CVPR, pp. 2957–2964 (2012)Google Scholar
  35. 35.
    Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wenyan Yang
    • 1
  • Yan Zhao
    • 1
  • Bolong Zheng
    • 2
    • 3
  • Guanfeng Liu
    • 1
  • Kai Zheng
    • 4
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  3. 3.Aalborg UniversityAalborgDenmark
  4. 4.Big Data Research CenterUniversity of Electronic Science and Technology ofChinaChengduChina

Personalised recommendations