Advertisement

Ruxolitinib

  • Stefanie Ajayi
  • Heiko Becker
  • Heike Reinhardt
  • Monika Engelhardt
  • Robert Zeiser
  • Nikolas von Bubnoff
  • Ralph Wäsch
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 212)

Abstract

Ruxolitinib, formerly known as INCB018424 or INC424, is a potent and selective oral inhibitor of Janus kinase (JAK) 1 and JAK2. Ruxolitinib has been approved for the treatment of myelofibrosis (MF) by the US Food and Drug Administration (FDA) in 2011 and by the European Medicines Agency (EMA) in 2012, followed by the approval for the treatment of hydroxyurea (HU)-resistant or -intolerant polycythemia vera (PV) in 2014. Both MF and PV are myeloproliferative neoplasms (MPNs) which are characterized by the aberrant activation of the JAK–STAT pathway. Clinically, MF features bone marrow fibrosis, splenomegaly, abnormal blood counts, and poor quality-of-life through associated symptoms. PV is characterized by the overproduction of primarily red blood cells (RBC), risk of thrombotic complications, and development of secondary MF. Ruxolitinib treatment results in a meaningful reduction in spleen size and symptom burden in the majority of MF patients and may also have a favorable effect on survival. In PV, ruxolitinib effectively controls the hematocrit and reduces splenomegaly. Since recently, ruxolitinib is also under investigation for the treatment of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Toxicities of ruxolitinib include myelosuppression, which results in dose-limiting thrombocytopenia and anemia, and viral reactivations. The metabolization of ruxolitinib through CYP3A4 needs to be considered particularly if co-administered with potent CYP3A4 inhibitors. Several further JAK inhibitors are currently under investigation for MPNs or other immuno-inflammatory diseases.

Keywords

Ruxolitinib Polycythemia vera Myelofibrosis Graft-versus-host disease 

References

  1. Al-Ali HK, Griesshammer M, le Coutre P et al (2016) Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica 101(9):1065–1073CrossRefPubMedPubMedCentralGoogle Scholar
  2. Caocci G, Murgia F, Podda L et al (2014) Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia 28(1):225–227CrossRefPubMedGoogle Scholar
  3. Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901CrossRefPubMedGoogle Scholar
  4. Daver N, Cortes JE, Pemmaraju N et al (2016) Ruxolitinib (RUX) in combination with 5-azacytidine (AZA) as therapy for patients (pts) with myelofibrosis (MF). Blood 128(22):4246Google Scholar
  5. Davis KL, Côté I, Kaye JA et al (2015) Real-world assessment of clinical outcomes in patients with lower-risk myelofibrosis receiving treatment with ruxolitinib. Adv Hematol 2015:848473CrossRefPubMedPubMedCentralGoogle Scholar
  6. Guglielmelli P, Biamonte F, Rotunno G et al (2014) Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood 123(14):2157–2160CrossRefPubMedGoogle Scholar
  7. Harrison CN, Kiladjian JJ, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366(9):787–798CrossRefPubMedGoogle Scholar
  8. Harrison CN, Vannucchi AM, Kiladjian JJ et al (2016) Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib versus best available therapy for myelofibrosis. Leukemia 30(8):1701–1707CrossRefPubMedPubMedCentralGoogle Scholar
  9. Harrison CN, Vannucchi AM, Platzbecker U et al (2017) Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 20 Dec (epup ehead of print)Google Scholar
  10. Iancu-Rubin C, Mosoyan G, Wang J, Kraus T, Sung V, Hoffman R (2013) Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp Hematol 41(2):155–166CrossRefPubMedGoogle Scholar
  11. Jakavi® (2017) Summary of product characteristics, Novartis http://www.fachinfo.de. Last revised Apr 2017
  12. James C, Ugo V, Le Couédic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148CrossRefPubMedGoogle Scholar
  13. Mascarenhas J, Hoffman R, Talpaz M et al (2016) Results of the persist-2 phase 3 study of pacritinib (PAC) versus best available therapy (BAT), including ruxolitinib (RUX), in patients (pts) with myelofibrosis (MF) and platelet counts <100,000/µl. Blood 128(22):LBA-5Google Scholar
  14. McPherson S, McMullin MF, Mills K (2017) Epigenetics in myeloproliferative neoplasms. J Cell Mol Med 21(9):1660–1667CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mertens C, Darnell JE Jr (2007) SnapShot: JAK-STAT signaling. Cell 131(3):612CrossRefPubMedGoogle Scholar
  16. Mesa RA, Gotlib J, Gupta V et al (2013) Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol 31(10):1285–1292CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mesa RA, Kiladjian JJ, Catalano JV et al (2017a) SIMPLIFY-1: a phase III randomized trial of momelotinib versus ruxolitinib in janus kinase inhibitor-naïve patients with myelofibrosis. J Clin Oncol 35(34):3844–3850CrossRefPubMedGoogle Scholar
  18. Mesa RA, Vannucchi AM, Mead A et al (2017b) Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol 4(5):e225–e236Google Scholar
  19. Passamonti F, Griesshammer M, Palandri F et al (2017) Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol 18(1):88–99CrossRefPubMedGoogle Scholar
  20. Patel KP, Newberry KJ, Luthra R et al (2015) Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood 126(6):790–797CrossRefPubMedPubMedCentralGoogle Scholar
  21. Quintás-Cardama A, Vaddi K, Liu P et al (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115(15):3109–3117CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rampal RK, Mascarenhas JO, Kosiorek HE et al (2016) Safety and efficacy of combined ruxolitinib and decitabine in patients with blast-phase MPN and post-MPN AML: results of a phase I study (Myeloproliferative Disorders Research Consortium 109 trial). Blood 128(22):1124Google Scholar
  23. Shi JG, Chen X, Emm T et al (2012) The effect of CYP3A4 inhibition or induction on the pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in healthy volunteers. J Clin Pharmacol 52(6):809–818CrossRefPubMedGoogle Scholar
  24. Shilling AD, Nedza FM, Emm T et al (2010) Metabolism, excretion, and pharmacokinetics of [14C] INCB018424, a selective Janus tyrosine kinase 1/2 inhibitor, in humans. Drug Metab Dispos 38(11):2023–2031CrossRefPubMedGoogle Scholar
  25. Spoerl S, Mathew NR, Bscheider M et al (2014) Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood 123(24):3832–3842CrossRefPubMedGoogle Scholar
  26. Stegelmann F, Hebart H, Bangerter M et al (2016) Ruxolitinib plus pomalidomide in myelofibrosis: updated results from the Mpnsg-0212 Trial (NCT01644110). Blood 128(22):1939Google Scholar
  27. Talpaz M, Paquette R, Afrin L et al (2013) Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol 6(1):81CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tefferi A, Pardanani A (2011) Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 86(12):1188–1191CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tefferi A, Litzow MR, Pardanani A (2011) Long-term outcome of treatment with ruxolitinib in myelofibrosis. N Engl J Med 365(15):1455–1457CrossRefPubMedGoogle Scholar
  30. Vannucchi AM, Kiladjian JJ, Griesshammer M et al (2015) Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 372(5):426–435CrossRefPubMedPubMedCentralGoogle Scholar
  31. Verstovsek S, Bose P (2017) JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood 130(2):115–125Google Scholar
  32. Verstovsek S, Kantarjian H, Mesa RA et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363(12):1117–1127CrossRefPubMedPubMedCentralGoogle Scholar
  33. Verstovsek S, Kantarjian HM, Estrov Z et al (2012a) Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood 120(6):1202–1209CrossRefPubMedPubMedCentralGoogle Scholar
  34. Verstovsek S, Mesa RA, Gotlib J et al (2012b) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807CrossRefPubMedPubMedCentralGoogle Scholar
  35. Verstovsek S, Mesa RA, Gotlib J et al (2013) The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol 161(4):508–516CrossRefPubMedPubMedCentralGoogle Scholar
  36. Verstovsek S, Mesa RA, Gotlib J et al (2017) Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 10(1):55CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zeiser R, Blazar BR (2017a) Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med 377(22):2167–2179CrossRefPubMedGoogle Scholar
  38. Zeiser R, Blazar BR (2017b) Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N Engl J Med 377(26):2565–2579CrossRefPubMedGoogle Scholar
  39. Zeiser R, Burchert A, Lengerke C et al (2015) Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia 29(10):2062–2068CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefanie Ajayi
    • 1
    • 2
  • Heiko Becker
    • 1
    • 2
  • Heike Reinhardt
    • 1
    • 2
  • Monika Engelhardt
    • 1
    • 2
  • Robert Zeiser
    • 1
    • 2
  • Nikolas von Bubnoff
    • 1
    • 2
  • Ralph Wäsch
    • 1
    • 2
  1. 1.Department of Hematology and OncologyUniversity of Freiburg Medical CenterFreiburgGermany
  2. 2.Comprehensive Cancer Center Freiburg (CCCF)FreiburgGermany

Personalised recommendations