• Katja Zirlik
  • Hendrik Veelken
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 212)


Idelalisib (GS-1101, CAL-101, Zydelig®) is an orally bioavailable, small-molecule inhibitor of the delta isoform (p110δ) of the enzyme phosphoinositide 3-kinase (PI3K). In contrast to the other PI3K isoforms, PI3Kδ is expressed selectively in hematopoietic cells. PI3Kδ signaling is active in many B-cell leukemias and lymphomas. By inhibiting the PI3Kδ protein, idelalisib blocks several cellular signaling pathways that maintain B-cell viability. Idelalisib is the first PI3K inhibitor approved by the US Food and Drug Administration (FDA). Treatment with idelalisib is indicated in relapsed/refractory chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and small lymphocytic lymphoma (SLL). This review presents the preclinical and clinical activity of idelalisib with a focus on clinical studies in CLL.


Idelalisib Kinase inhibitor Chronic lymphocytic leukemia (CLL) PI 3 Kinase 


  1. Akinleye A, Avvaru P, Furqan M, Song Y, Liu D (2013) Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 6(1):88PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alinari L, Christian B, Baiocchi RA (2012) Novel targeted therapies for mantle cell lymphoma. Oncotarget 3(2):203–211PubMedPubMedCentralCrossRefGoogle Scholar
  3. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI) (2016) A meta-analysis of individual patient data. Lancet Oncol 17(6):779–790Google Scholar
  4. Arnason JE, Brown JR (2017) Targeting B cell signaling in chronic lymphocytic leukemia. Curr Oncol Rep 19(9):61PubMedCrossRefPubMedCentralGoogle Scholar
  5. Awan FT, Byrd JC (2014) New strategies in chronic lymphocytic leukemia: shifting treatment paradigms. Clin Cancer Res 20(23):5869–5874PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barr PM, Saylors GB, Spurgeon SE et al (2016) Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood 127(20):2411–2415PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bodo J, Zhao X, Sharma A et al (2013) The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways. Br J Haematol 163(1):72–80PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bossaer JB, Chakraborty K (2017) Drug interaction between idelalisib and diazepam resulting in altered mental status and respiratory failure. J Oncol Pharm Pract 23(6):470–472PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brown JR (2016) The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia. Semin Oncol 43(2):260–264PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brown JR, Byrd JC, Coutre SE et al (2014) Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood 123(22):3390–3397PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burger JA, Okkenhaug K (2014) Haematological cancer: idelalisib-targeting PI3Kδ in patients with B-cell malignancies. Nat Rev Clin Oncol 11(4):184–186PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burger JA, Tedeschi A, Barr PM et al (2015) Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 373(25):2425–2437PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burke RT, Meadows S, Loriaux MM et al (2014) A potential therapeutic strategy for chronic lymphocytic leukemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor. Oncotarget 5(4):908–915PubMedPubMedCentralCrossRefGoogle Scholar
  14. Byrd JC, Jones JJ, Woyach JA, Johnson AJ, Flynn JM (2014a) Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician. J Clin Oncol 32(27):3039–3047PubMedPubMedCentralCrossRefGoogle Scholar
  15. Byrd JC, Brown JR, O’Brien S et al (2014b) Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 371(3):213–223PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen Y, Zhou Q, Zhang L et al (2016) Idelalisib induces G1 arrest and apoptosis in chronic myeloid leukemia K562 cells. Oncol Rep 36(6):3643–3650PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cheson BD, Byrd JC, Rai KR et al (2012) Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol 30(23):2820–2822PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352(8):804–815PubMedCrossRefGoogle Scholar
  19. Choi MY, Kipps TJ (2012) Inhibitors of B-cell receptor signaling for patients with B-cell malignancies. Cancer J 18(5):404–410PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coutre SE, Barrientos JC, Brown JR et al (2015) Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma 56(10):2779–2786PubMedPubMedCentralCrossRefGoogle Scholar
  21. Danilov AV (2013) Targeted therapy in chronic lymphocytic leukemia: past, present, and future. Clin Ther 35(9):1258–1270PubMedCrossRefPubMedCentralGoogle Scholar
  22. Davids MS, Deng J, Wiestner A et al (2012) Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood 120(17):3501–3509PubMedPubMedCentralCrossRefGoogle Scholar
  23. de Vos S, Wagner-Johnston N, Coutre S et al (2016) Combinations of idelalisib with rituximab and/or bendamustine in patients with recurrent indolent non-Hodgkin lymphoma. Blood Adv 1(2):122–131PubMedPubMedCentralCrossRefGoogle Scholar
  24. Duhren-von Minden M, Ubelhart R, Schneider D et al (2012) Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489(7415):309–312PubMedCrossRefPubMedCentralGoogle Scholar
  25. Eichhorst B, Fink AM, Bahlo J et al (2016) First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 17(7):928–942PubMedCrossRefPubMedCentralGoogle Scholar
  26. Eyre TA, Osborne WL, Gallop-Evans E et al (2017) Results of a multicentre UK-wide compassionate use programme evaluating the efficacy of idelalisib monotherapy in relapsed, refractory follicular lymphoma. Br J HaematolGoogle Scholar
  27. Falchi L, Baron JM, Orlikowski CA, Ferrajoli A (2016) BCR signaling inhibitors: an overview of toxicities associated with ibrutinib and idelalisib in patients with chronic lymphocytic leukemia. Mediterr J Hematol Infect Dis 8(1):e2016011PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fiorcari S, Brown WS, McIntyre BW et al (2013) The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells. PLoS One 8(12):e83830PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fischer K, Bahlo J, Fink AM et al (2016) Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 127(2):208–215PubMedCrossRefPubMedCentralGoogle Scholar
  30. Flinn IW, Kahl BS, Leonard JP et al (2014) Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-δ, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 123(22):3406–3413PubMedPubMedCentralCrossRefGoogle Scholar
  31. Foster JG, Blunt MD, Carter E, Ward SG (2012) Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 64(4):1027–1054PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fruman DA, Cantley LC (2014) Idelalisib—a PI3Kδ inhibitor for B-cell cancers. N Engl J Med 370(11):1061–1062PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fruman DA, Rommel C (2011) PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 1(7):562–572PubMedCrossRefPubMedCentralGoogle Scholar
  34. Furman RR, Sharman JP, Coutre SE et al (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370(11):997–1007PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gabriel JG, Kapila A, Gonzalez-Estrada A (2017) A severe case of cutaneous adverse drug reaction secondary to a novice drug: idelalisib. J Investig Med High Impact Case Rep 5(2):2324709617711463PubMedPubMedCentralGoogle Scholar
  36. Gilbert JA (2014) Idelalisib: targeting PI3Kδ in B-cell malignancies. Lancet Oncol 15(3):e108PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gockeritz E, Kerwien S, Baumann M et al (2015) Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells. Int J Cancer 137(9):2234–2242PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gopal AK, Fanale MA, Moskowitz CH et al (2017a) Phase II study of idelalisib, a selective inhibitor of PI3Kδ, for relapsed/refractory classical Hodgkin lymphoma. Ann Oncol 28(5):1057–1063PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gopal AK, Kahl BS, de Vos S et al (2014) PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 370(11):1008–1018PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gopal AK, Kahl BS, Flowers CR et al (2017b) Idelalisib is effective in patients with high-risk follicular lymphoma and early relapse after initial chemoimmunotherapy. Blood 129(22):3037–3039PubMedCrossRefPubMedCentralGoogle Scholar
  41. Greenwell IB, Ip A, Cohen JB (2017) PI3K inhibitors: understanding toxicity mechanisms and management. Oncology (Williston Park) 31(11):821–828Google Scholar
  42. Gupta A, Li HC (2016) Idelalisib-induced pneumonitis. BMJ Case Rep 2016Google Scholar
  43. Hallek M, Fischer K, Fingerle-Rowson G et al (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376(9747):1164–1174PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hammami MB, Al-Taee A, Meeks M et al (2017) Idelalisib-induced colitis and skin eruption mimicking graft-versus-host disease. Clin J Gastroenterol 10(2):142–146PubMedCrossRefPubMedCentralGoogle Scholar
  45. Haustraete E, Obert J, Diab S et al (2016) Idelalisib-related pneumonitis. Eur Respir J 47(4):1280–1283PubMedCrossRefPubMedCentralGoogle Scholar
  46. Herishanu Y, Perez-Galan P, Liu D et al (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2):563–574PubMedPubMedCentralCrossRefGoogle Scholar
  47. Herman SE, Gordon AL, Wagner AJ et al (2010) Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116(12):2078–2088PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hewett YG, Uprety D, Shah BK (2016) Idelalisib—a PI3Kδ targeting agent for B-cell malignancies. J Oncol Pharm Pract 22(2):284–288PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hoellenriegel J, Meadows SA, Sivina M et al (2011) The phosphoinositide 3’-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118(13):3603–3612PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huilaja L, Lindgren O, Soronen M, Siitonen T, Tasanen K (2017) A slowly developed severe cutaneous adverse reaction to idelalisib. J Eur Acad Dermatol VenereolGoogle Scholar
  51. Ikeda H, Hideshima T, Fulciniti M et al (2010) PI3K/p110δ is a novel therapeutic target in multiple myeloma. Blood 116(9):1460–1468PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jahangiri S, Friedberg J, Barr P (2014) Emerging protein kinase inhibitors for the treatment of non-Hodgkin’s lymphoma. Expert Opin Emerg Drugs 19(3):367–383PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jain N, O’Brien S (2016) Targeted therapies for CLL: practical issues with the changing treatment paradigm. Blood Rev 30(3):233–244PubMedCrossRefPubMedCentralGoogle Scholar
  54. Janku F (2017) Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients. Cancer Treat Rev 59:93–101PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jerkeman M, Hallek M, Dreyling M, Thieblemont C, Kimby E, Staudt L (2017) Targeting of B-cell receptor signalling in B-cell malignancies. J Intern Med 282(5):415–428PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jeyakumar D, O’Brien S (2016) B cell receptor inhibition as a target for CLL therapy. Best Pract Res Clin Haematol 29(1):2–14PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jin F, Robeson M, Zhou H et al (2015) Clinical drug interaction profile of idelalisib in healthy subjects. J Clin Pharmacol 55(8):909–919PubMedCrossRefPubMedCentralGoogle Scholar
  58. Jones JA, Robak T, Brown JR et al (2017) Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol 4(3):e114–e126PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kahl BS, Spurgeon SE, Furman RR et al (2014) A phase 1 study of the PI3Kδ inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood 123(22):3398–3405PubMedPubMedCentralCrossRefGoogle Scholar
  60. Keating GM (2015) Idelalisib: a review of its use in chronic lymphocytic leukaemia and indolent non-Hodgkin’s lymphoma. Target Oncol 10(1):141–151PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lampson BL, Kasar SN, Matos TR et al (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128(2):195–203PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lannutti BJ, Meadows SA, Herman SE et al (2011) CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117(2):591–594PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liewer S, Huddleston AN (2015) Oral targeted therapies: managing drug interactions, enhancing adherence and optimizing medication safety in lymphoma patients. Expert Rev Anticancer Ther 15(4):453–464PubMedCrossRefPubMedCentralGoogle Scholar
  64. Louie CY, DiMaio MA, Matsukuma KE, Coutre SE, Berry GJ, Longacre TA (2015) Idelalisib-associated enterocolitis: clinicopathologic features and distinction from other enterocolitides. Am J Surg Pathol 39(12):1653–1660PubMedCrossRefPubMedCentralGoogle Scholar
  65. Macias-Perez IM, Flinn IW (2013) GS-1101: a delta-specific PI3K inhibitor in chronic lymphocytic leukemia. Curr Hematol Malig Rep 8(1):22–27PubMedCrossRefPubMedCentralGoogle Scholar
  66. Maffei R, Fiorcari S, Martinelli S, Potenza L, Luppi M, Marasca R (2015) Targeting neoplastic B cells and harnessing microenvironment: the “double face” of ibrutinib and idelalisib. J Hematol Oncol 8:60PubMedPubMedCentralCrossRefGoogle Scholar
  67. Marini BL, Samanas L, Perissinotti AJ (2017) Expanding the armamentarium for chronic lymphocytic leukemia: a review of novel agents in the management of chronic lymphocytic leukemia. J Oncol Pharm Pract 23(7):502–517PubMedCrossRefPubMedCentralGoogle Scholar
  68. Markham A (2014) Idelalisib: first global approval. Drugs 74(14):1701–1707PubMedCrossRefPubMedCentralGoogle Scholar
  69. Meadows SA, Vega F, Kashishian A et al (2012) PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 119(8):1897–1900PubMedCrossRefPubMedCentralGoogle Scholar
  70. Miller BW, Przepiorka D, de Claro RA et al (2015) FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin Cancer Res 21(7):1525–1529PubMedCrossRefPubMedCentralGoogle Scholar
  71. Modi P, Balakrishnan K, Yang Q, Wierda WG, Keating MJ, Gandhi V (2017) Idelalisib and bendamustine combination is synergistic and increases DNA damage response in chronic lymphocytic leukemia cells. Oncotarget 8(10):16259–16274PubMedPubMedCentralCrossRefGoogle Scholar
  72. Molica S (2017) Targeted therapy in the treatment of chronic lymphocytic leukemia: facts, shortcomings and hopes for the future. Expert Rev Hematol 10(5):425–432PubMedCrossRefPubMedCentralGoogle Scholar
  73. Morabito F, Gentile M, Seymour JF, Polliack A (2015) Ibrutinib, idelalisib and obinutuzumab for the treatment of patients with chronic lymphocytic leukemia: three new arrows aiming at the target. Leuk Lymphoma 56(12):3250–3256PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nardi V, Song Y, Santamaria-Barria JA et al (2012) Activation of PI3K signaling in Merkel cell carcinoma. Clin Cancer Res 18(5):1227–1236PubMedPubMedCentralCrossRefGoogle Scholar
  75. Niemann CU, Jones J, Wiestner A (2013) Towards targeted therapy of chronic lymphocytic leukemia. Adv Exp Med Biol 792:259–291PubMedCrossRefPubMedCentralGoogle Scholar
  76. Niemann CU, Wiestner A (2013) B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol 23(6):410–421PubMedPubMedCentralCrossRefGoogle Scholar
  77. O’Brien SM, Lamanna N, Kipps TJ et al (2015) A phase 2 study of idelalisib plus rituximab in treatment-naive older patients with chronic lymphocytic leukemia. Blood 126(25):2686–2694PubMedPubMedCentralCrossRefGoogle Scholar
  78. Oak JS, Deane JA, Kharas MG et al (2006) Sjogren’s syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proc Natl Acad Sci U S A 103(45):16882–16887PubMedPubMedCentralCrossRefGoogle Scholar
  79. Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3(4):317–330PubMedCrossRefPubMedCentralGoogle Scholar
  80. Okoli TC, Peer CJ, Dunleavy K, Figg WD (2015) Targeted PI3Kδ inhibition by the small molecule idelalisib as a novel therapy in indolent non-Hodgkin lymphoma. Cancer Biol Ther 16(2):204–206PubMedPubMedCentralCrossRefGoogle Scholar
  81. Patton DT, Garden OA, Pearce WP et al (2006) Cutting edge: the phosphoinositide 3-kinase p110δ is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177(10):6598–6602PubMedCrossRefPubMedCentralGoogle Scholar
  82. Patton DT, Wilson MD, Rowan WC, Soond DR, Okkenhaug K (2011) The PI3K p110δ regulates expression of CD38 on regulatory T cells. PLoS One 6(3):e17359PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pongas G, Cheson BD (2016) PI3K signaling pathway in normal B cells and indolent B-cell malignancies. Semin Oncol 43(6):647–654PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pula A, Stawiski K, Braun M, Iskierka-Jazdzewska E, Robak T (2017) Efficacy and safety of B-cell receptor signaling pathway inhibitors in relapsed/refractory chronic lymphocytic leukemia: a systematic review and meta-analysis of randomized clinical trials. Leuk Lymphoma 1–11Google Scholar
  85. Puri KD, Gold MR (2012) Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory diseases and B-cell malignancies. Front Immunol 3:256PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rai KR (2015) Therapeutic potential of new B cell-targeted agents in the treatment of elderly and unfit patients with chronic lymphocytic leukemia. J Hematol Oncol 8:85PubMedPubMedCentralCrossRefGoogle Scholar
  87. Salles G, Schuster SJ, de Vos S et al (2017) Efficacy and safety of idelalisib in patients with relapsed, rituximab- and alkylating agent-refractory follicular lymphoma: a subgroup analysis of a phase 2 study. Haematologica 102(4):e156–e159PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sanford DS, Wierda WG, Burger JA, Keating MJ, O’Brien SM (2015) Three newly approved drugs for chronic lymphocytic leukemia: incorporating ibrutinib, idelalisib, and obinutuzumab into clinical practice. Clin Lymphoma Myeloma Leuk 15(7):385–391PubMedPubMedCentralCrossRefGoogle Scholar
  89. Seiler T, Hutter G, Dreyling M (2016) The emerging role of PI3K inhibitors in the treatment of hematological malignancies: preclinical data and clinical progress to date. Drugs 76(6):639–646PubMedCrossRefPubMedCentralGoogle Scholar
  90. Shao Q, Byrum SD, Moreland LE et al (2013) A proteomic study of human Merkel cell carcinoma. J Proteomics Bioinform 6:275–282PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sharman J, Di Paolo J (2016) Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib. Ther Adv Hematol 7(3):157–170PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shiver MB, Mahmoud F, Gao L (2015) Response to idelalisib in a patient with stage IV Merkel-cell carcinoma. N Engl J Med 373(16):1580–1582PubMedPubMedCentralCrossRefGoogle Scholar
  93. Smith SM, Pitcher BN, Jung SH et al (2017) Safety and tolerability of idelalisib, lenalidomide, and rituximab in relapsed and refractory lymphoma: the alliance for clinical trials in oncology A051201 and A051202 phase 1 trials. Lancet Haematol 4(4):e176–e182PubMedPubMedCentralCrossRefGoogle Scholar
  94. Somoza JR, Koditek D, Villasenor AG et al (2015) Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J Biol Chem 290(13):8439–8446PubMedPubMedCentralCrossRefGoogle Scholar
  95. ten Hacken E, Burger JA (2014) Molecular pathways: targeting the microenvironment in chronic lymphocytic leukemia—focus on the B-cell receptor. Clin Cancer Res 20(3):548–556PubMedCrossRefPubMedCentralGoogle Scholar
  96. ten Hacken E, Burger JA (2016) Microenvironment interactions and B-cell receptor signaling in chronic lymphocytic leukemia: implications for disease pathogenesis and treatment. Biochim Biophys Acta 1863(3):401–413PubMedCrossRefPubMedCentralGoogle Scholar
  97. Traynor K (2014) Idelalisib approved for three blood cancers. Am J Health Syst Pharm 71(17):1430PubMedPubMedCentralGoogle Scholar
  98. Vanhaesebroeck B, Khwaja A (2014) PI3Kδ inhibition hits a sensitive spot in B cell malignancies. Cancer Cell 25(3):269–271PubMedCrossRefPubMedCentralGoogle Scholar
  99. Vitale C, Griggio V, Todaro M, Salvetti C, Boccadoro M, Coscia M (2017) Magic pills: new oral drugs to treat chronic lymphocytic leukemia. Expert Opin Pharmacother 18(4):411–425PubMedCrossRefPubMedCentralGoogle Scholar
  100. Vyas P, Vohora D (2017) Phosphoinositide-3-kinases as the novel therapeutic targets for the inflammatory diseases: current and future perspectives. Curr Drug Targets 18(14):1622–1640PubMedCrossRefPubMedCentralGoogle Scholar
  101. Weidner AS, Panarelli NC, Geyer JT et al (2015) Idelalisib-associated colitis: histologic findings in 14 patients. Am J Surg Pathol 39(12):1661–1667PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wiestner A (2012) Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2012:88–96PubMedPubMedCentralGoogle Scholar
  103. Wiestner A (2014) BCR pathway inhibition as therapy for chronic lymphocytic leukemia and lymphoplasmacytic lymphoma. Hematology Am Soc Hematol Educ Program 2014(1):125–134PubMedPubMedCentralGoogle Scholar
  104. Wiestner A (2015) The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia. Haematologica 100(12):1495–1507PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yang Q, Modi P, Newcomb T, Queva C, Gandhi V (2015) Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res 21(7):1537–1542PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yap TA, Bjerke L, Clarke PA, Workman P (2015) Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr Opin Pharmacol 23:98–107PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ysebaert L, Feugier P, Michallet AS (2015) Management of elderly patients with chronic lymphocytic leukemia in the era of targeted therapies. Curr Opin Oncol 27(5):365–370PubMedCrossRefPubMedCentralGoogle Scholar
  108. Zelenetz AD, Barrientos JC, Brown JR et al (2017) Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 18(3):297–311PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zelenetz AD, Brown JR, Delgado J, Eradat H, Ghia P, Jacob A (2016) Updated analysis of overall survival in randomized phase III study of idelalisib in combination with bendamustine and rituximab in patients with relapsed/refractory CLL. Blood 128(22):a231Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine I: Hematology, Oncology, and Stem Cell TransplantationUniversity Medical Center FreiburgFreiburgGermany
  2. 2.Tumor and Breast Center ZeTuPSt. GallenSwitzerland
  3. 3.Department of HematologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations