Advertisement

Combining and Contrasting Formal Concept Analysis and APOS Theory

  • Uta Priss
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10872)

Abstract

This paper investigates how two different theories (FCA and APOS Theory) complement each other with respect to applications in mathematics education research. APOS Theory is a constructivist theory concerned with mathematical learning whereas FCA is a mathematical theory itself. Together both theories provide different insights into how conceptual structures can be modelled and learned: FCA provides a model for a structural analysis of mathematical concepts and APOS Theory highlights the challenges involved in learning concepts that are complex and abstract.

References

  1. Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa Fuentes, S., Trigueros, M., Weller, K.: APOS Theory - A Framework for Research and Curriculum Development in Mathematics Education. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-1-4614-7966-6CrossRefMATHGoogle Scholar
  2. Clark, A.: Being There. Putting Brain, Body, and World Together Again. MIT Press, Cambridge (1997)Google Scholar
  3. Dubinsky, E., Mcdonald, M.A.: APOS: a constructivist theory of learning in undergraduate mathematics education research. In: Holton, D., Artigue, M., Kirchgräber, U., Hillel, J., Niss, M., Schoenfeld, A. (eds.) The Teaching and Learning of Mathematics at University Level. NISS, vol. 7, pp. 275–282. Springer, Dordrecht (2001).  https://doi.org/10.1007/0-306-47231-7_25CrossRefGoogle Scholar
  4. Endres, D.M., Foldiak, P., Priss, U.: An application of formal concept analysis to semantic neural decoding. Ann. Math. Artif. Intell. 57(3), 233–248 (2010). SpringerMathSciNetMATHGoogle Scholar
  5. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-59830-2CrossRefMATHGoogle Scholar
  6. Gobet, F., Lane, P.C.R., Croker, S., Cheng, P.C.-H., Jones, G., Oliver, I., Pine, J.: Chunking mechanisms in human learning. Trends Cogn. Sci. 5(6), 236–243 (2001)CrossRefGoogle Scholar
  7. Hazzan, O.: How students attempt to reduce abstraction in the learning of mathematics and in the learning of computer science. Comput. Sci. Educ. 13(2), 95–122 (2003)CrossRefGoogle Scholar
  8. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)CrossRefGoogle Scholar
  9. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet: an on-line lexical database. Int. J. Lexicogr. 3(4), 235–244 (1990)CrossRefGoogle Scholar
  10. Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W.M., Cyre, W. (eds.) ICCS-ConceptStruct 1999. LNCS (LNAI), vol. 1640, pp. 423–441. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48659-3_27CrossRefGoogle Scholar
  11. Priss, U.: Classification of meronymy by methods of relational concept analysis. In: Proceedings of the 1996 Midwest Artificial Intelligence Conference, Bloomington, Indiana (1996)Google Scholar
  12. Priss, U.: Associative and formal structures in AI. In: Proceedings of the 13th Midwest Artificial Intelligence and Cognitive Science Conference, Chicago, pp. 36–42 (2002)Google Scholar
  13. Priss, U.: A semiotic-conceptual analysis of conceptual development in learning mathematics. In: Presmeg, N., Radford, L., Roth, W.-M., Kadunz, G. (eds.) Signs of Signification. IM, pp. 173–188. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-70287-2_10CrossRefGoogle Scholar
  14. Scaife, M., Rogers, Y.: External cognition: how do graphical representations work. Int. J. Hum.-Comput. Stud. 45, 185–213 (1996)CrossRefGoogle Scholar
  15. Sowa, J.: Conceptual Graphs. Foundations of Artificial Intelligence, pp. 213–237. Elsevier, New York (2008)Google Scholar
  16. Tall, D., Vinner, S.: Concept image and concept definition in mathematics with particular reference to limits and continuity. Educ. Stud. Math. 12(2), 151–169 (1981)CrossRefGoogle Scholar
  17. Wille, R.: Existential concept graphs of power context families. In: Priss, U., Corbett, D., Angelova, G. (eds.) ICCS-ConceptStruct 2002. LNCS (LNAI), vol. 2393, pp. 382–395. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45483-7_29CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zentrum für erfolgreiches Lehren und LernenOstfalia University of Applied SciencesWolfenbüttelGermany

Personalised recommendations