Lifted Dynamic Junction Tree Algorithm

  • Marcel GehrkeEmail author
  • Tanya Braun
  • Ralf Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10872)


Probabilistic models involving relational and temporal aspects need exact and efficient inference algorithms. Existing approaches are approximative, include unnecessary grounding, or do not consider the relational and temporal aspects of the models. One approach for efficient reasoning on relational static models given multiple queries is the lifted junction tree algorithm. In addition, for propositional temporal models, the interface algorithm allows for efficient reasoning. To leverage the advantages of the two algorithms for relational temporal models, we present the lifted dynamic junction tree algorithm, an exact algorithm to answer multiple queries efficiently for probabilistic relational temporal models with known domains by reusing computations for multiple queries and multiple time steps. First experiments show computational savings while appropriately accounting for relational and temporal aspects of models.


  1. 1.
    Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). Scholar
  3. 3.
    Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree algorithm. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning. LNCS, vol. 10775, pp. 54–72. Springer, Cham (2017). Scholar
  4. 4.
    Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  5. 5.
    Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 433–444. ACM (2012)Google Scholar
  6. 6.
    Dylla, M., Miliaraki, I., Theobald, M.: A temporal-probabilistic database model for information extraction. Proc. VLDB Endow. 6(14), 1810–1821 (2013)CrossRefGoogle Scholar
  7. 7.
    Geier, T., Biundo, S.: Approximate online inference for dynamic Markov logic networks. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 764–768. IEEE (2011)Google Scholar
  8. 8.
    Kanagal, B., Deshpande, A.: Lineage processing over correlated probabilistic databases. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 675–686. ACM (2010)Google Scholar
  9. 9.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B (Methodol.) 50, 157–224 (1988)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Manfredotti, C.E.: Modeling and Inference with Relational Dynamic Bayesian Networks. Ph.D. thesis, Ph.D. Dissertation, University of Milano-Bicocca (2009)CrossRefGoogle Scholar
  11. 11.
    Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of AAAI, vol. 8, pp. 1062–1068 (2008)Google Scholar
  12. 12.
    Murphy, K., Weiss, Y.: The factored frontier algorithm for approximate inference in DBNs. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pp. 378–385. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  13. 13.
    Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis, University of California, Berkeley (2002)Google Scholar
  14. 14.
    Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2764–2771. IEEE (2013)Google Scholar
  15. 15.
    Papai, T., Kautz, H., Stefankovic, D.: Slice normalized dynamic Markov logic networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1907–1915 (2012)Google Scholar
  16. 16.
    Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI, vol. 3, pp. 985–991 (2003)Google Scholar
  17. 17.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)CrossRefGoogle Scholar
  18. 18.
    de Salvo Braz, R.: Lifted First-Order Probabilistic Inference. Ph.D. thesis, Ph.D. Dissertation, University of Illinois at Urbana Champaign (2007)Google Scholar
  19. 19.
    Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1052–1060 (2013)Google Scholar
  20. 20.
    Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: efficient inference and applications. Mach. Learn. 82(2), 239–272 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: TP-Compilation for inference in probabilistic logic programs. Int. J. Approx. Reason. 78, 15–32 (2016)CrossRefGoogle Scholar
  23. 23.
    Vlasselaer, J., Meert, W., Van den Broeck, G., De Raedt, L.: Efficient probabilistic inference for dynamic relational models. In: AAAIWS’14-13 Proceedings of the 13th AAAI Conference on Statistical Relational AI, pp. 131–132. AAAI Press (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Information SystemsUniversität zu LübeckLübeckGermany

Personalised recommendations