Advertisement

Aristotelian and Duality Relations Beyond the Square of Opposition

  • Lorenz Demey
  • Hans Smessaert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10871)

Abstract

Nearly all squares of opposition found in the literature represent both the Aristotelian relations and the duality relations, and exhibit a very close correspondence between both types of logical relations. This paper investigates the interplay between Aristotelian and duality relations in diagrams beyond the square. In particular, we study a Buridan octagon, a Lenzen octagon, a Keynes-Johnson octagon and a Moretti octagon. Each of these octagons is a natural extension of the square, both from an Aristotelian perspective and from a duality perspective. The results of our comparative analysis turn out to be highly nuanced.

Keywords

Aristotelian relations Duality relations Square of opposition Aristotelian diagram Duality diagram Logical geometry 

Notes

Acknowledgements

We would like to thank Margaux Smets and three anonymous reviewers for their valuable feedback. The first author holds a Postdoctoral Fellowship of the Research Foundation–Flanders (FWO).

References

  1. 1.
    van Benthem, J.: Linguistic universals in logical semantics. In: Zaefferer, D. (ed.) Semantic Universals and Universal Semantics, pp. 17–36. Foris (1991)Google Scholar
  2. 2.
    Blanché, R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  3. 3.
    Chow, K.F.: General patterns of opposition squares and 2n-gons. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square, pp. 263–275. Springer, Basel (2012).  https://doi.org/10.1007/978-3-0348-0379-3_18CrossRefGoogle Scholar
  4. 4.
    Copenhaver, B.P., Normore, C.G., Parsons, T. (eds.): Peter of Spain, Summaries of Logic. Text, Translation, Introduction and Notes. Oxford University Press, Oxford (2014)MATHGoogle Scholar
  5. 5.
    D’Alfonso, D.: The square of opposition and generalized quantifiers. In: Béziau, J.Y., Payette, G. (eds.) Around and Beyond the Square of Opposition, pp. 219–227. Springer, Basel (2012).  https://doi.org/10.1007/978-3-0348-0379-3_15CrossRefMATHGoogle Scholar
  6. 6.
    Demey, L.: Algebraic aspects of duality diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 300–302. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31223-6_32CrossRefGoogle Scholar
  7. 7.
    Demey, L.: Structures of oppositions for public announcement logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 313–339. Springer, Basel (2012).  https://doi.org/10.1007/978-3-0348-0379-3_22CrossRefMATHGoogle Scholar
  8. 8.
    Demey, L.: Interactively illustrating the context-sensitivity of Aristotelian diagrams. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 331–345. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25591-0_24CrossRefGoogle Scholar
  9. 9.
    Demey, L.: The logical geometry of Russell’s theory of definite descriptions. Unpublished manuscript (2017)Google Scholar
  10. 10.
    Demey, L., Smessaert, H.: The relationship between Aristotelian and Hasse diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 213–227. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44043-8_23CrossRefMATHGoogle Scholar
  11. 11.
    Demey, L., Smessaert, H.: Duality in logic and language. In: Fieser, J., Dowden, B. (eds.) Internet Encyclopedia of Philosophy. University of Tennessee, Knoxville (2016)MATHGoogle Scholar
  12. 12.
    Demey, L., Smessaert, H.: The interaction between logic and geometry in Aristotelian diagrams. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds.) Diagrams 2016. LNCS (LNAI), vol. 9781, pp. 67–82. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42333-3_6CrossRefGoogle Scholar
  13. 13.
    Demey, L., Smessaert, H.: Metalogical decorations of logical diagrams. Log. Univers. 10, 233–292 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Demey, L., Smessaert, H.: Shape heuristics in Aristotelian diagrams. In: Kutz, O., Borgo, S., Bhatt, M. (eds.) Shapes 3.0, vol. 1616, pp. 35–45. CEUR-WS (2016)Google Scholar
  15. 15.
    Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments. J. Philos. Log. (2017).  https://doi.org/10.1007/s10992-017-9430-5
  16. 16.
    Demey, L., Smessaert, H.: Logical and geometrical distance in polyhedral Aristotelian diagrams in knowledge representation. Symmetry 9, 204 (2017)CrossRefGoogle Scholar
  17. 17.
    Demey, L., Steinkrüger, P.: De logische geometrie van Johannes Buridanus’ modale achthoek. Tijdschrift voor Filosofie 79, 217–238 (2017)Google Scholar
  18. 18.
    Diestel, R.: Graph Theory. Springer, Heidelberg (2006).  https://doi.org/10.1007/978-3-662-53622-3CrossRefMATHGoogle Scholar
  19. 19.
    Dziewicki, M.H. (ed.): Johannis Wyclif, Tractatus de Logica, vol. 1. Trübner (1893)Google Scholar
  20. 20.
    Hacker, E.A.: The octagon of opposition. Notre Dame J. Form. Log. 16, 352–353 (1975)CrossRefGoogle Scholar
  21. 21.
    Hess, E.: The open future square of opposition: a defense. Sophia 56, 573–587 (2017)CrossRefGoogle Scholar
  22. 22.
    Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago (1989)Google Scholar
  23. 23.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, Abingdon (1996)CrossRefGoogle Scholar
  24. 24.
    Humberstone, L.: The Connectives. MIT Press, Cambridge (2011)MATHGoogle Scholar
  25. 25.
    Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism 24, 32–56 (1950)CrossRefGoogle Scholar
  26. 26.
    Johnson, W.: Logic. Part I. Cambridge University Press, Cambridge (1921)Google Scholar
  27. 27.
    Keynes, J.N.: Studies and Exercises in Formal Logic. MacMillan, London (1884)Google Scholar
  28. 28.
    Klima, G. (ed.): John Buridan, Summulae de Dialectica. Yale University Press, New Haven (2001)Google Scholar
  29. 29.
    Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive Editions (1966)Google Scholar
  30. 30.
    Lenzen, W.: How to square knowledge and belief. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 305–311. Springer, Basel (2012).  https://doi.org/10.1007/978-3-0348-0379-3_21CrossRefMATHGoogle Scholar
  31. 31.
    Libert, T.: Hypercubes of duality. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 293–301. Springer, Basel (2012).  https://doi.org/10.1007/978-3-0348-0379-3_20CrossRefMATHGoogle Scholar
  32. 32.
    Luzeaux, D., Sallantin, J., Dartnell, C.: Logical extensions of Aristotle’s square. Log. Univers. 2, 167–187 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mikhail, J.: Elements of Moral Cognition. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  34. 34.
    Moretti, A.: The geometry of logical opposition. Ph.D. thesis, Neuchâtel (2009)Google Scholar
  35. 35.
    Moretti, A.: Why the logical hexagon? Log. Univers. 6, 69–107 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Summer 2017 edn. CSLI, Stanford (2017)Google Scholar
  37. 37.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)Google Scholar
  38. 38.
    Read, S.: John Buridan’s theory of consequence and his octagons of opposition. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 93–110. Springer, Basel (2012).  https://doi.org/10.1007/978-3-0348-0379-3_6CrossRefMATHGoogle Scholar
  39. 39.
    Schumann, A.: On two squares of opposition: the Leśniewski’s style formalization of synthetic propositions. Acta Analytica 28, 71–93 (2013)CrossRefGoogle Scholar
  40. 40.
    Sesmat, A.: Logique II. Les Raisonnements. La syllogistique. Hermann (1951)Google Scholar
  41. 41.
    Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Log. Univers. 6, 171–199 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Smessaert, H., Demey, L.: Logical and geometrical complementarities between Aristotelian diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 246–260. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44043-8_26CrossRefMATHGoogle Scholar
  43. 43.
    Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. J. Logic Lang. Inform. 23, 527–565 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Smessaert, H., Demey, L.: Visualising the boolean algebra \(\mathbb{B}_{4}\) in 3D. In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds.) Diagrams 2016. LNCS (LNAI), vol. 9781, pp. 289–292. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42333-3_26CrossRefGoogle Scholar
  45. 45.
    Smessaert, H., Demey, L.: Duality patterns in 2-PCD fragments. South Am. J. Log. (2017)Google Scholar
  46. 46.
    Smessaert, H., Demey, L.: The unreasonable effectiveness of bitstrings in logical geometry. In: Béziau, J.Y., Basti, G. (eds.) The Square of Opposition: A Cornerstone of Thought, pp. 197–214. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-45062-9_12CrossRefGoogle Scholar
  47. 47.
    Westerståhl, D.: Classical vs. modern squares of opposition, and beyond. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition. A General Framework for Cognition, pp. 195–229. Peter Lang (2012)Google Scholar
  48. 48.
    Yao, Y.: Duality in rough set theory based on the square of opposition. Fundamenta Informaticae 127, 49–64 (2013)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Logic and Analytic PhilosophyKU LeuvenLeuvenBelgium
  2. 2.Department of LinguisticsKU LeuvenLeuvenBelgium

Personalised recommendations