Advertisement

Structural Biology of Jasmonic Acid Metabolism and Responses in Plants

  • Cynthia K. Holland
  • Joseph M. Jez
Chapter

Abstract

Jasmonic acid (JA) and its many derivatives constitute a diverse family of modified oxylipins that are involved in hormonal defense responses, growth regulation, and other aspects of plant physiology. To respond to external cues, plants synthesize jasmonyl-isoleucine (JA-Ile), the active form of the hormone, using the acyl acid amido synthetase JAR1. JA-Ile then targets the jasmonate F-box receptor (i.e., the COI1-ASK1 complex), and recruits JASMONATE-ZIM DOMAIN PROTEIN (JAZ) proteins. This results in degradation of the JAZ protein repressor to regulate jasmonate gene responses. Alternatively, when JA-Ile levels decline, JAZ proteins can bind an array of co-repressors and transcription factors to down-regulate JA responses. Three-dimensional structures of the protein players involved in JA signaling shed light on the molecular architecture of the binding interactions between proteins and the specific chemistry of the enzymes. Additionally, structures of the JA biosynthesis and modifying enzymes provide insight into the strict stereospecific formation of JA (i.e., 3R, 7S-jasmonate), as well as decorated forms of JA. Here we provide an up-to-date look into the structural investigations of JA signaling and metabolism and suggest future areas of study that remain to be understood on the molecular level.

References

  1. Avanci NC, Luche DD, Goldman GH, Goldman MH (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505CrossRefPubMedGoogle Scholar
  2. Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci U S A 95:8113–8118CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815CrossRefPubMedGoogle Scholar
  4. Bitto E, Bingman CA, Bittova L, Houston NL, Boston RS, Fox BG, Phillips GN Jr (2009) X-ray structure of ILL2, an auxin-conjugate amidohydrolase from Arabidopsis thaliana. Proteins 74:61–71CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bolter CJ (1993) Methyl jasmonate induces papain inhibitor(s) in tomato leaves. Plant Physiol 103:1347–1353CrossRefPubMedPubMedCentralGoogle Scholar
  6. Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T (2006) Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. Proc Natl Acad Sci U S A 103:14337–14342CrossRefPubMedPubMedCentralGoogle Scholar
  7. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205CrossRefPubMedGoogle Scholar
  8. Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438CrossRefPubMedGoogle Scholar
  9. Cevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen Q, Westfall CS, Hicks LM, Wang S, Jez JM (2010) Kinetic basis for the conjugation of auxin by a GH3 family indole acetic acid-amido synthetase. J Biol Chem 285:29780–29786CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671CrossRefPubMedGoogle Scholar
  13. Chini A, Gimenez-Ibanez S, Goossens A, Solano R (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147–156CrossRefPubMedGoogle Scholar
  14. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381CrossRefPubMedGoogle Scholar
  15. Dathe W (1981) Endogenous plant hormones of the broad bean, Vicia faba L.(−)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530–535CrossRefPubMedGoogle Scholar
  16. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359CrossRefPubMedGoogle Scholar
  17. Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de l'essence de jasmin. Helv Chim Acta 45:675–685CrossRefGoogle Scholar
  18. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101:1781–1785CrossRefPubMedPubMedCentralGoogle Scholar
  19. Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009a) (+)-7-Iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350CrossRefPubMedGoogle Scholar
  21. Fonseca S, Chico JM, Solano R (2009b) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547CrossRefPubMedGoogle Scholar
  22. Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922CrossRefPubMedPubMedCentralGoogle Scholar
  23. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407CrossRefPubMedGoogle Scholar
  24. Goldstein RE, Jimenez G, Cook O, Gur D, Paroush Z (1999) Huckebein repressor activity in Drosophila terminal patterning is mediated by Groucho. Development 126:3747–3755PubMedGoogle Scholar
  25. Gulick AM (2009) Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hagen G, Guilfoyle TJ (1985) Rapid induction of selective transcription by auxins. Lol Cell Biol 5:1197–1203Google Scholar
  27. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hoffman E, Zerbe P, Schaller F (2006) The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Plant Cell 18:3201–3217CrossRefGoogle Scholar
  29. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66CrossRefPubMedGoogle Scholar
  30. Jimenez G, Paroush Z, Ish-Horowicz D (1997) Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev 11:3072–3082CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71CrossRefPubMedGoogle Scholar
  32. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105:7100–7105CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703CrossRefPubMedGoogle Scholar
  34. Ke J, Ma H, Gu X et al (2015) Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Sci Adv 1:e1500107CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292CrossRefPubMedGoogle Scholar
  36. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kitaoka N, Masubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H (2011) Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol 52:1757–1765CrossRefPubMedGoogle Scholar
  38. Komachi K, Redd MJ, Johnson AD (1994) The WD repeats of Tup1 interact with the homeo domain protein α2. Genes Dev 8:2857–2867CrossRefPubMedGoogle Scholar
  39. Kombrink E (2012) Chemical and genetic exploration of jasmonate biosynthesis and signaling in plants. Planta 236:1351–1366CrossRefPubMedGoogle Scholar
  40. Koo AJ, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281:33511–33520CrossRefPubMedGoogle Scholar
  41. Koo AJ, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A 108:9298–9303CrossRefPubMedPubMedCentralGoogle Scholar
  42. Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, Brandizzi F, Matsuura H, Howe GA (2014) Endoplasmic reticulum-associated inactivation of the hormone jasmonyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem 298:29728–29738CrossRefGoogle Scholar
  43. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331CrossRefPubMedGoogle Scholar
  44. Lee D, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368CrossRefPubMedGoogle Scholar
  45. Li C, Williams MM, Loh YT, Lee GI, Howe GA (2002) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130:494–503CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li L, Chang Z, Pan Z, Fu Z, Wang X (2008) Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci U S A 105:13883–13888CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950CrossRefPubMedPubMedCentralGoogle Scholar
  48. McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94:5473–5477CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315CrossRefPubMedGoogle Scholar
  50. Muhr J, Andersson E, Persson M, Jessell TM, Ericson J (2001) Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104:861–873CrossRefPubMedGoogle Scholar
  51. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331CrossRefPubMedPubMedCentralGoogle Scholar
  52. Paroush Z, Finley RL Jr, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79:805–815CrossRefPubMedGoogle Scholar
  53. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pazos F, Pietrosemoli N, Garcia-Martin JA, Solano R (2013) Protein intrinsic disorder in plants. Front Plant Sci 4:363CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pietrosemoli N, Garcia-Martin JA, Solano R, Pazos F (2013) Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation. PLoS One 8:e55524CrossRefPubMedPubMedCentralGoogle Scholar
  58. Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis- structure, function, regulation. Phytochemistry 70:1532–1153CrossRefPubMedGoogle Scholar
  60. Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667CrossRefPubMedGoogle Scholar
  61. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 98:4788–4793CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sheard LB, Tan X, Mao H et al (2010) Jasmonate perception by inositol-phosphate potentiated COI1-JAZ co-receptor. Nature 465:400–405CrossRefGoogle Scholar
  63. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127CrossRefPubMedPubMedCentralGoogle Scholar
  64. Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89:6837–6840CrossRefPubMedPubMedCentralGoogle Scholar
  65. Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stuhlfelder C, Lottspeich F, Mueller MJ (2002) Purification and partial amino acid sequences of an esterase from tomato. Phytochemistry 60:233–240CrossRefPubMedGoogle Scholar
  67. Stuhlfelder C, Mueller MJ, Warzecha H (2004) Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. Eur J Biochem 271:2976–2983CrossRefPubMedGoogle Scholar
  68. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645CrossRefPubMedGoogle Scholar
  69. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants: implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840CrossRefPubMedPubMedCentralGoogle Scholar
  70. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665CrossRefPubMedGoogle Scholar
  71. Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058CrossRefPubMedPubMedCentralGoogle Scholar
  74. Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM (2010) Modulating plant hormones by enzyme action. Plant Signal Behav 5:1607–1612Google Scholar
  75. Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012) Structural basis for pre-receptor modulation of plant hormones by GH3 family proteins. Science 336:1708–1711CrossRefPubMedGoogle Scholar
  76. Westfall CS, Muehler AM, Jez JM (2013) Enzyme action in the regulation of plant hormone responses. J Biol Chem 288:19304–19311CrossRefPubMedPubMedCentralGoogle Scholar
  77. Widemann E, Miesch L, Lugan R, Holder E, Heinrich C, Aubert Y, Miesch M, Pinot F, Heitz T (2013) The amindohydrolases IAR3 and ILL6 contribute to jasmonyl-isoleucine horomone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J Biol Chem 288:31701–31714CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wu J, Wang L, Baldwin IT (2008) Methyl jasmonate-elicited herbivore resistance: does MeHA function as a signal without being hydrolyzed to JA? Planta 227:1161–1168CrossRefPubMedPubMedCentralGoogle Scholar
  79. Xie D, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094CrossRefPubMedGoogle Scholar
  80. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang H, Levine M, Ashe HL (2001) Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev 15:261–266CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang F, Yao J, Ke J, Zhang L, Lam VQ, Xin XF, Zhou XE, Chen J, Brunzelle J, Griffin PR, Zhou M, Xu HE, Melcher K, He SY (2015) Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525:269–273CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704–1716Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyWashington University in St. LouisSt. LouisUSA

Personalised recommendations