X-Ray Crystallography

  • Oksana Degtjarik
  • Gabriel Demo
  • Michaela Wimmerova
  • Ivana Kuta SmatanovaEmail author


This chapter describes the fundamentals of the X-ray crystallography method and its application for studies of tertiary protein structures. A brief introduction to the theory of X-ray diffraction is given, followed by more detailed explanations of all protein structure determination stages, starting from crystal growth up to the final validation of protein structure. We emphasize the theoretical and practical aspects of the protein crystallization process which is the most crucial step of X-ray protein crystallography.


  1. Adams PD, Afonine PV et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asherie N (2004) Protein crystallization and phase diagrams. Methods 34(3):266–272CrossRefPubMedGoogle Scholar
  3. Baird JK, Scott SC et al (2001) Theory of the effect of pH and ionic strength on the nucleation of protein crystals. J Cryst Growth 232(1):50–62CrossRefGoogle Scholar
  4. Battye TGG, Kontogiannis L et al (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67(4):271–281CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bergfors T (2003) Seeds to crystals. J Struct Biol 142(1):66–76CrossRefPubMedGoogle Scholar
  6. Bergfors TM (2009) Protein crystallization. International University Line, La JollaGoogle Scholar
  7. Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New YorkGoogle Scholar
  8. Bugg CE (1986) The future of protein crystal growth. J Cryst Growth 76(3):535–544CrossRefGoogle Scholar
  9. Carbonnaux C, Ries-Kautt M et al (1995) Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2. Protein Sci 4(10):2123–2128CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chayen NE (2004) Turning protein crystallisation from an art into a science. Curr Opin Struct Biol 14(5):577–583CrossRefPubMedGoogle Scholar
  11. Chayen NE (2005) Methods for separating nucleation and growth in protein crystallisation. Prog iBiophys Mol Biol 88(3):329–337CrossRefGoogle Scholar
  12. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5(2):147–153CrossRefPubMedGoogle Scholar
  13. Chayen NE, Stewart PDS et al (1992) Microbatch crystallization under oil – a new technique allowing many small-volume crystallization trials. J Cryst Growth 122(1–4):176–180CrossRefGoogle Scholar
  14. Chen VB,, Arendall WB 3rd et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21CrossRefPubMedGoogle Scholar
  15. Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 18(04):323–422CrossRefPubMedGoogle Scholar
  16. Emsley P, Lohkamp B et al (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501CrossRefPubMedPubMedCentralGoogle Scholar
  17. Faust A, Panjikar S et al (2008) A tutorial for learning and teaching macromolecular crystallography. J Appl Crystallogr 41:1161–1172CrossRefGoogle Scholar
  18. Faust A, Puehringer S et al (2010) Update on the tutorial for learning and teaching macromolecular crystallography. J Appl Crystallogr 43:1230–1237CrossRefGoogle Scholar
  19. Garcia-Ruiz JM, Moreno A et al (1998) Teaching protein crystallisation by the gel acupuncture method. J Chem Educ 75(4):442–446CrossRefGoogle Scholar
  20. Giacovazzo C (2002) Fundamentals of crystallography. Oxford University Press, OxfordGoogle Scholar
  21. Green AA (1932) Studies in the physical chemistry of the proteins: X. The solubility of hemoglobin in solutions of chlorides and sulfates of varying concentration. J Biol Chem 95(1):47–66Google Scholar
  22. Guilloteau J-P, Ries-Kautt MM et al (1992) Variation of lysozyme solubility as a function of temperature in the presence of organic and inorganic salts. J Cryst Growth 122(1):223–230CrossRefGoogle Scholar
  23. Hampel A, Labanauskas M et al (1968) Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNA’s. Science 162(3860):1384–1387CrossRefPubMedGoogle Scholar
  24. Jan D (1999) Principles of protein X-ray crystallography. Springer, New YorkGoogle Scholar
  25. Kabsch W (2010) Xds. Acta Crystallographica Section D-Biological Crystallography 66:125–132CrossRefPubMedCentralGoogle Scholar
  26. Kierzek AM, Zielenkiewicz P (2001) Models of protein crystal growth. Biophys Chem 91(1):1–20CrossRefPubMedGoogle Scholar
  27. Luft JR, Newman J et al (2014) Crystallization screening: the influence of history on current practice. Acta Crystallographica Section F-Structural Biology Communications 70:835–853CrossRefGoogle Scholar
  28. Marek J, Trávníček Z (2002) Monokrystalová rentgenová strukturní analýza. Vydavatelství Univerzity, PalackéhoGoogle Scholar
  29. McPherson A (1990) Current approaches to macromolecular crystallization. Eur J Biochem 189(1):1–23CrossRefPubMedGoogle Scholar
  30. McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  31. McPherson A (2001) A comparison of salts for the crystallization of macromolecules. Protein Sci 10(2):418–422CrossRefPubMedPubMedCentralGoogle Scholar
  32. McPherson A, Koszelak S et al (1986) The effects of neutral detergents on the crystallization of soluble-proteins. J Cryst Growth 76(3):547–553CrossRefGoogle Scholar
  33. Minor W, Cymborowski M et al (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallographica Section D-Biological Crystallography 62:859–866CrossRefGoogle Scholar
  34. Nanao MH, Sheldrick GM et al (2005) Improving radiation-damage substructures for RIP. Acta Crystallographica Section D-Biological Crystallography 61:1227–1237CrossRefGoogle Scholar
  35. Ng JD, Gavira JA et al (2003) Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J Struct Biol 142(1):218–231CrossRefPubMedGoogle Scholar
  36. Ravelli RBG, Nanao MH et al (2005) Phasing in the presence of radiation damage. J Synchrotron Radiat 12:276–284CrossRefPubMedGoogle Scholar
  37. Rhodes G (2010) Crystallography made crystal clear: a guide for users of macromolecular models. Elsevier Science, BurlingtonGoogle Scholar
  38. Rupp B (2010) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Science, New YorkGoogle Scholar
  39. Salemme FR, Genieser L et al (1988) Molecular factors stabilizing protein crystals. J Cryst Growth 90(1):273–282CrossRefGoogle Scholar
  40. Saridakis E, Khurshid S et al (2011) Protein crystallization facilitated by molecularly imprinted polymers. Proc Natl Acad Sci U S A 108(27):11081–11086CrossRefPubMedPubMedCentralGoogle Scholar
  41. Snell EH, Nagel RM et al (2008) The application and use of chemical space mapping to interpret crystallization screening results. Acta Crystallographica Section D-Biological Crystallography 64:1240–1249CrossRefPubMedCentralGoogle Scholar
  42. Taylor G (2003) The phase problem. Acta Crystallographica Section D-Biological Crystallography 59:1881–1890CrossRefGoogle Scholar
  43. Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55(Pt 4):849–861CrossRefPubMedPubMedCentralGoogle Scholar
  44. Trakhanov S, Quiocho FA (1995) Influence of divalent-cations in protein crystallization. Protein Sci 4(9):1914–1919CrossRefPubMedPubMedCentralGoogle Scholar
  45. Winn MD, Ballard CC et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallographica Section D-Biological Crystallography 67:235–242CrossRefPubMedCentralGoogle Scholar
  46. Zhang KY, Cowtan K et al (1997) Combining constraints for electron-density modification. Methods Enzymol 277:53–64CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oksana Degtjarik
    • 1
    • 2
  • Gabriel Demo
    • 3
    • 4
  • Michaela Wimmerova
    • 3
  • Ivana Kuta Smatanova
    • 2
    • 5
    Email author
  1. 1.Department of Structural BiologyWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institute of Chemistry and Biochemistry, University of South BohemiaČeské BudějoviceCzech Republic
  3. 3.CEITEC -Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
  4. 4.RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Center for Nanobiology and Structural Biology of the Institute of MicrobiologyAcademy of Sciences of the Czech RepublicNove HradyCzech Republic

Personalised recommendations