Advertisement

An Automation-Friendly Set Theory for the B Method

  • Guillaume Bury
  • Simon Cruanes
  • David DelahayeEmail author
  • Pierre-Louis Euvrard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10817)

Abstract

We propose an automation-friendly set theory for the B method. This theory is expressed using first order logic extended to polymorphic types and rewriting. Rewriting is introduced along the lines of deduction modulo theory, where axioms are turned into rewrite rules over both propositions and terms. We also provide experimental results of several tools able to deal with polymorphism and rewriting over a benchmark of problems in pure set theory (i.e. without arithmetic).

Keywords

B method Set theory Automated deduction Polymorphic types Rewriting 

Supplementary material

References

  1. 1.
    Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996). ISBN 0521496195CrossRefGoogle Scholar
  2. 2.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_29CrossRefGoogle Scholar
  3. 3.
    Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated deduction in the B set theory using typed proof search and deduction modulo. In: Fehnker, A., McIver, A., Sutcliffe, G., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence and Reasoning (LPAR) - Short Presentations, vol. 35, pp. 42–58. EasyChair, Suva (Fiji), November 2015Google Scholar
  4. 4.
    Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a proof platform for the automated verification of B proof obligations. In: Ameur, Y.A., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 126–127. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43652-3_26CrossRefGoogle Scholar
  5. 5.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning (JAR) 31(1), 33–72 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guillaume Bury
    • 1
  • Simon Cruanes
    • 2
  • David Delahaye
    • 3
    Email author
  • Pierre-Louis Euvrard
    • 3
  1. 1.LSV, ENS Paris-Saclay, InriaCachanFrance
  2. 2.Aesthetic IntegrationAustinUSA
  3. 3.LIRMMUniversité de Montpellier, CNRSMontpellierFrance

Personalised recommendations