Simplification of CTL Formulae for Efficient Model Checking of Petri Nets

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10877)


We study techniques to overcome the state space explosion problem in CTL model checking of Petri nets. Classical state space pruning approaches like partial order reductions and structural reductions become less efficient with the growing size of the CTL formula. The reason is that the more places and transitions are used as atomic propositions in a given formula, the more of the behaviour (interleaving) becomes relevant for the validity of the formula. We suggest several methods to reduce the size of CTL formulae, while preserving their validity. By these methods, we significantly increase the benefits of structural and partial order reductions, as the combination of our techniques can achive up to 60% average reduction in formulae sizes. The algorithms are implemented in the open-source verification tool TAPAAL and we document the efficiency of our approach on a large benchmark of Petri net models and queries from the Model Checking Contest 2017.



We would like to thank Karsten Wolf and Torsten Liebke from Rostock University for providing us with the development snapshot of the latest version of LoLA and for their help with setting up the tool and answering our questions. The last author is partially affiliated with FI MU, Brno.


  1. 1.
    Avrunin, G.S., Buy, U.A., Corbett, J.C.: Integer programming in the analysis of concurrent systems. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 92–102. Springer, Heidelberg (1992). Scholar
  2. 2.
    Avrunin, G.S., Buy, U.A., Corbett, J.C., Dillon, L.K., Wileden, J.C.: Automated analysis of concurrent systems with the constrained expression toolset. IEEE Trans. Softw. Eng. 17(11), 1204–1222 (1991)CrossRefGoogle Scholar
  3. 3.
    Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: open source (mixed-integer) linear programming system. Eindhoven University of Technology (2004)Google Scholar
  4. 4.
    Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability problem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 480–496. Springer, Heidelberg (2016). Scholar
  5. 5.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). Scholar
  6. 6.
    Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging. Commun. ACM 52(11), 74–84 (2009)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)CrossRefGoogle Scholar
  8. 8.
    Corbett, J.C., Avrunin, G.S.: Using integer programming to verify general safety and liveness properties. Formal Methods Syst. Des. 6(1), 97–123 (1995)CrossRefGoogle Scholar
  9. 9.
    Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jepsen, T.S., Kaufmann, I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., Pastva, S., Srba, J.: Extended dependency graphs and efficient distributed fixed-point computation. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 139–158. Springer, Cham (2017). Scholar
  10. 10.
    David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012). Scholar
  11. 11.
    Esparza, J., Melzer, S.: Verification of safety properties using integer programming: beyond the state equation. Formal Methods Syst. Des. 16(2), 159–189 (2000)CrossRefGoogle Scholar
  12. 12.
    Geffroy, T., Leroux, J., Sutre, G.: Occam’s Razor applied to the Petri net coverability problem. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 77–89. Springer, Cham (2016). Scholar
  13. 13.
    Hack, M.H.T.: Analysis of production schemata by Petri nets. Technical report, DTIC Document (1972)Google Scholar
  14. 14.
    Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318. Springer, Heidelberg (2016). Scholar
  15. 15.
    Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Berthomieu, B., Ciardo, G., Colange, M., Dal Zilio, S., Amparore, E., Beccuti, M., Liebke, T., Meijer, J., Miner, A., Rohr, C., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.: Complete Results for the 2017 Edition of the Model Checking Contest, June 2017.
  16. 16.
    Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods for state properties. Formal Methods Syst. Des. 29(3), 215–251 (2006)CrossRefGoogle Scholar
  17. 17.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  18. 18.
    Murata, T., Koh, J.Y.: Reduction and expansion of live and safe marked graphs. IEEE Trans. Circ. Syst. 27(1), 68–70 (1980)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Optimization. Wiley, Chichester (1992). Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.S.: Constraint classification for mixed integer programming formulations. COAL Bull. 20, 8–12 (1988)zbMATHGoogle Scholar
  20. 20.
    Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999). Scholar
  21. 21.
    Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer, Heidelberg (2000). Scholar
  22. 22.
    Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fundamenta Informaticae 47(3–4), 325–335 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). Scholar
  24. 24.
    Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 140–165. Springer, Heidelberg (2017). Scholar
  25. 25.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238. Springer, Heidelberg (2011). Scholar
  26. 26.
    Wolf, K.: Running LoLA 2.0 in a model checking competition. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 274–285. Springer, Heidelberg (2016). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceAalborg UniversityAalborg EastDenmark

Personalised recommendations