Advertisement

Analysis and Synthesis of Weighted Marked Graph Petri Nets

  • Raymond Devillers
  • Thomas HujsaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10877)

Abstract

Numerous real-world systems can be modeled with Petri nets, which allow a combination of concurrency with synchronizations and conflicts. To alleviate the difficulty of checking their behaviour, a common approach consists in studying specific subclasses. In the converse problem of Petri net synthesis, a Petri net of some subclass has to be constructed efficiently from a given specification, typically from a labelled transition system describing the behaviour of the desired net.

In this paper, we focus on a notorious subclass of persistent Petri nets, the weighted marked graphs (WMGs), also called generalised (or weighted) event (or marked) graphs or weighted T-nets. In such nets, edges have multiplicities (weights) and each place has at most one ingoing and one outgoing transition. Although extensively studied in previous works and benefiting from strong results, both their analysis and synthesis can be further investigated. To this end, we provide new conditions delineating more precisely their behaviour and give a dedicated synthesis procedure.

Keywords

Weighted Petri net Analysis Synthesis Marked graph Event graph 

References

  1. 1.
    Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47967-4CrossRefzbMATHGoogle Scholar
  2. 2.
    Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded marked graph Petri nets. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04921-2_13CrossRefzbMATHGoogle Scholar
  3. 3.
    Best, E., Devillers, R.: Synthesis of persistent systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 111–129. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07734-5_7CrossRefzbMATHGoogle Scholar
  4. 4.
    Best, E., Devillers, R.: State space axioms for T-systems. Acta Inf. 52(2–3), 133–152 (2015).  https://doi.org/10.1007/s00236-015-0219-0MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Best, E., Devillers, R.: Synthesis and reengineering of persistent systems. Acta Inf. 52(1), 35–60 (2015).  https://doi.org/10.1007/s00236-014-0209-7MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Best, E., Devillers, R.: Synthesis of bounded choice-free Petri nets. In: Aceto, L., Frutos Escrig, D. (eds.) Proceedings of 26th International Conference on Concurrency Theory (CONCUR 2015), pp. 128–141 (2015).  https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
  7. 7.
    Best, E., Devillers, R.: Synthesis of live and bounded persistent systems. Fundam. Inform. 140, 39–59 (2015).  https://doi.org/10.3233/FI-2015-1244MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri nets. Inf. Comput. 253(3), 399–410 (2017).  https://doi.org/10.1016/j.ic.2016.06.006MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis: algorithmic issues. Acta Inform. 54, 1–37 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Commoner, F., Holt, A., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971).  https://doi.org/10.1016/S0022-0000(71)80013-2MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector-addition systems. Inf. Process. Lett. 3(3), 78–80 (1975).  https://doi.org/10.1016/0020-0190(75)90020-4MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Darondeau, P.: Equality of languages coincides with isomorphism of reachable state graphs for bounded and persistent Petri nets. Inf. Process. Lett. 94(6), 241–245 (2005).  https://doi.org/10.1016/j.ipl.2005.03.002MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, New York (1995)CrossRefGoogle Scholar
  14. 14.
    Devillers, R.: Products of transition systems and additions of Petri nets. In: Desel, J., Yakovlev, A. (eds.) Proceedings of 16th International Conference on Application of Concurrency to System Design (ACSD 2016), pp. 65–73 (2016).  https://doi.org/10.1109/ACSD.2016.10
  15. 15.
    Devillers, R.: Factorisation of transition systems. Acta Inform. 54, 1–24 (2017).  https://doi.org/10.1007/s00236-017-0300-yMathSciNetCrossRefGoogle Scholar
  16. 16.
    Devillers, R., Schlachter, U.: Factorisation of Petri net solvable transition systems. In: 39th International Conference on Applications and Theory of Petri Nets and Concurrency, Bratislava (2018)Google Scholar
  17. 17.
    Hujsa, T., Delosme, J.M., Munier-Kordon, A.: On liveness and reversibility of equal-conflict Petri nets. Fundam. Inform. 146(1), 83–119 (2016).  https://doi.org/10.3233/FI-2016-1376MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hujsa, T., Devillers, R.: On liveness and deadlockability in subclasses of weighted Petri nets. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 267–287. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57861-3_16CrossRefGoogle Scholar
  19. 19.
    Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In: Feng, T. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975).  https://doi.org/10.1007/3-540-07135-0_113CrossRefGoogle Scholar
  20. 20.
    Lee, E., Messerschmidt, D.: Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987).  https://doi.org/10.1109/TC.1987.5009446CrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  22. 22.
    Marchetti, O., Munier-Kordon, A.: A sufficient condition for the liveness of weighted event graphs. Eur. J. Oper. Res. 197(2), 532–540 (2009).  https://doi.org/10.1016/j.ejor.2008.07.037MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pino, J.L., Bhattacharyya, S.S., Lee, E.A.: A hierarchical multiprocessor scheduling framework for synchronous dataflow graphs. Technical report, University of California, Berkeley, May 1995Google Scholar
  24. 24.
    Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-65306-6_19CrossRefGoogle Scholar
  25. 25.
    Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Synchronization. Signal Processing and Communications. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  26. 26.
    Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-55676-1_20CrossRefGoogle Scholar
  27. 27.
    Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern. Part A 27(1), 73–83 (1997).  https://doi.org/10.1109/3468.553226CrossRefGoogle Scholar
  28. 28.
    Teruel, E., Silva, M.: Structure theory of equal conflict systems. Theor. Comput. Sci. 153(1–2), 271–300 (1996).  https://doi.org/10.1016/0304-3975(95)00124-7MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Department of Computing ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations