One Net Fits All

A Unifying Semantics of Dynamic Fault Trees Using GSPNs
  • Sebastian Junges
  • Joost-Pieter Katoen
  • Mariëlle Stoelinga
  • Matthias VolkEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10877)


Dynamic Fault Trees (DFTs) are a prominent model in reliability engineering. They are strictly more expressive than static fault trees, but this comes at a price: their interpretation is non-trivial and leaves quite some freedom. This paper presents a GSPN semantics for DFTs. This semantics is rather simple and compositional. The key feature is that this GSPN semantics unifies all existing DFT semantics from the literature. All semantic variants can be obtained by choosing appropriate priorities and treatment of non-determinism.


  1. 1.
    Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering: Modeling, Analysis, and Applications. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  2. 2.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dugan, J.B., Bavuso, S.J., Boyd, M.: Fault trees and sequence dependencies. In: Proceedings of RAMS, pp. 286–293. IEEE (1990)Google Scholar
  4. 4.
    Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: Proceedings of DSN, pp. 299–310 (2016)Google Scholar
  5. 5.
    Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM TOCS 2(2), 93–122 (1984)CrossRefGoogle Scholar
  6. 6.
    Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, Hoboken (1995)zbMATHGoogle Scholar
  7. 7.
    Raiteri, D.C.: The conversion of dynamic fault trees to stochastic Petri nets, as a case of graph transformation. ENTCS 127(2), 45–60 (2005)zbMATHGoogle Scholar
  8. 8.
    Bobbio, A., Raiteri, D.C.: Parametric fault trees with dynamic gates and repair boxes. In: Proceedings of RAMS, pp. 459–465. IEEE (2004)Google Scholar
  9. 9.
    Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L.: Parametric fault tree for the dependability analysis of redundant systems and its high-level Petri net semantics. IEEE Trans. Softw. Eng. 29(3), 270–287 (2003)CrossRefGoogle Scholar
  10. 10.
    Kabir, S., Walker, M., Papadopoulos, Y.: Quantitative evaluation of Pandora temporal fault trees via Petri nets. IFAC-PapersOnLine 48(21), 458–463 (2015)CrossRefGoogle Scholar
  11. 11.
    Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for computational engineering: a case study on dynamic fault trees. In: Proceedings of ISSRE, pp. 270–282 (2000)Google Scholar
  12. 12.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE TDSC 7(2), 128–143 (2010)Google Scholar
  13. 13.
    Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)CrossRefGoogle Scholar
  14. 14.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proceedings of LICS, pp. 342–351. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. LNCS, vol. 2428. Springer, Heidelberg (2002). Scholar
  16. 16.
    Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013). Scholar
  17. 17.
    Sullivan, K., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: Proceedings of FTCS, pp. 232–235 (1999)Google Scholar
  18. 18.
    Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013). Scholar
  19. 19.
    Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). Scholar
  20. 20.
    Trivedi, K.S., Sahner, R.A.: SHARPE at the age of twenty two. SIGMETRICS Perform. Eval. Rev. 36(4), 52–57 (2009)CrossRefGoogle Scholar
  21. 21.
    Ciardo, G., Miner, A.S., Wan, M.: Advanced features in SMART: the stochastic model checking analyzer for reliability and timing. SIGMETRICS Perform. Eval. Rev. 36(4), 58–63 (2009)CrossRefGoogle Scholar
  22. 22.
    Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev. 36(4), 4–9 (2009)CrossRefGoogle Scholar
  23. 23.
    Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSLTA model checking. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170–173. Springer, Cham (2014). Scholar
  24. 24.
    Montani, S., Portinale, L., Bobbio, A., Raiteri, D.C.: Radyban: a tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks. Reliab. Eng. Syst. Saf. 93(7), 922–932 (2008)CrossRefGoogle Scholar
  25. 25.
    Boudali, H., Dugan, J.B.: A continuous-time Bayesian network reliability modeling, and analysis framework. IEEE Trans. Reliab. 55(1), 86–97 (2006)CrossRefGoogle Scholar
  26. 26.
    Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes. Reliab. Eng. Syst. Saf. 82(2), 149–163 (2003)CrossRefGoogle Scholar
  27. 27.
    Rauzy, A., Blériot-Fabre, C.: Towards a sound semantics for dynamic fault trees. Reliab. Eng. Syst. Saf. 142, 184–191 (2015)CrossRefGoogle Scholar
  28. 28.
    Merle, G., Roussel, J.M., Lesage, J.J.: Quantitative analysis of dynamic fault trees based on the structure function. Qual. Reliab. Eng. Int. 30(1), 143–156 (2014)CrossRefGoogle Scholar
  29. 29.
    Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full implementation of the fault tree handbook. Control Eng. Pract. 17(10), 1115–1125 (2009)CrossRefGoogle Scholar
  30. 30.
    Chen, D., Mahmud, N., Walker, M., Feng, L., Lönn, H., Papadopoulos, Y.: Systems modeling with EAST-ADL for fault tree analysis through HiP-HOPS. IFAC Proc. Vol. 46(22), 91–96 (2013)CrossRefGoogle Scholar
  31. 31.
    Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). Scholar
  32. 32.
    Raiteri, D.C.: Integrating several formalisms in order to increase fault trees’ modeling power. Reliab. Eng. Syst. Saf. 96(5), 534–544 (2011)CrossRefGoogle Scholar
  33. 33.
    Junges, S., Katoen, J.P., Stoelinga, M., Volk, M.: One net fits all: a unifying semantics of dynamic fault trees using GSPNs. CoRR abs/1803.05376 (2018)Google Scholar
  34. 34.
    Manian, R., Coppit, D.W., Sullivan, K.J., Dugan, J.B.: Bridging the gap between systems and dynamic fault tree models. In: Proceedings of RAMS, pp. 105–111 (1999)Google Scholar
  35. 35.
    Engelfriet, J.: Branching processes of Petri nets. Acta Inform. 28(6), 575–591 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sebastian Junges
    • 1
  • Joost-Pieter Katoen
    • 1
    • 2
  • Mariëlle Stoelinga
    • 2
    • 3
  • Matthias Volk
    • 1
    Email author
  1. 1.Software Modeling and VerificationRWTH Aachen UniversityAachenGermany
  2. 2.Formal Methods and ToolsUniversity of TwenteEnschedeNetherlands
  3. 3.Department of Software ScienceRadboud University NijmegenNijmegenNetherlands

Personalised recommendations