Advertisement

Image Retrieval by Use of Linguistic Description in Databases

  • Krzysztof WiaderekEmail author
  • Danuta Rutkowska
  • Elisabeth Rakus-Andersson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

In this paper, a new method of image retrieval is proposed. This concerns retrieving color digital images from a database that contains a specific linguistic description considered within the theory of fuzzy granulation and computing with words. The linguistic description is generated by use of the CIE chromaticity color model. The image retrieval is performed in different way depending on users’ knowledge about the color image. Specific database queries can be formulated for the image retrieval.

Keywords

Image retrieval Image recognition Information granulation Linguistic description Fuzzy sets Computing with words Image databases CIE chromaticity color model Knowledge-based system 

References

  1. 1.
    Alain, K.M., Nathanael, K.M., Rostin, M.M.: Integrating fuzzy concepts to design a fuzzy data warehouse. Int. J. Comput. 27(1), 112–132 (2017)Google Scholar
  2. 2.
    Almohammadi, K., Hagras, H., Alghazzawi, D., Aldabbagh, G.: A survey of artificial intelligence techniques employed for adaptive educational systems within e-learning platforms. J. Artif. Intell. Soft Comput. Res. 7(1), 47–64 (2017)CrossRefGoogle Scholar
  3. 3.
    Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and TOPSIS for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)CrossRefGoogle Scholar
  4. 4.
    Biere, M.: Business Intelligence for the Enterprise. Prentice Hall, Upper Saddle River (2003)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  6. 6.
    Fortner, B., Meyer, T.E.: Number by Color. A Guide to Using Color to Undersdand Technical Data. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-1-4612-1892-0CrossRefzbMATHGoogle Scholar
  7. 7.
    Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–1239 (2017)CrossRefGoogle Scholar
  8. 8.
    Marshall, A.M., Gunasekaran, S.: Image retrieval - a review. Int. J. Eng. Res. Technol. 3(5), 1128–1131 (2014)Google Scholar
  9. 9.
    Pawlak, Z: Granularity of knowledge, indiscernibility and rough sets. In: IEEE International Conference Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, vol. 1, pp. 106–110 (1998)Google Scholar
  10. 10.
    Prasad, M., Liu, Y.-T., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)CrossRefGoogle Scholar
  11. 11.
    Rakus-Andersson, E.: Fuzzy and Rough Techniques in Medical Diagnosis and Medication. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-49708-0
  12. 12.
    Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)CrossRefGoogle Scholar
  13. 13.
    Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-7908-1802-4CrossRefGoogle Scholar
  14. 14.
    Wiaderek, K.: Fuzzy sets in colour image processing based on the CIE chromaticity triangle. In: Rutkowska, D., Cader, A., Przybyszewski, K. (eds.) Selected Topics in Computer Science Applications. Academic Publishing House EXIT, Warsaw, Poland, pp. 3–26 (2011)Google Scholar
  15. 15.
    Wiaderek, K., Rutkowska, D.: Fuzzy granulation approach to color digital picture recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 412–425. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38658-9_37CrossRefGoogle Scholar
  16. 16.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Color digital picture recognition based on fuzzy granulation approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 319–332. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_28CrossRefGoogle Scholar
  17. 17.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Information granules in application to image recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 649–659. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_58CrossRefGoogle Scholar
  18. 18.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: New algorithms for a granular image recognition system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 755–766. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_67CrossRefGoogle Scholar
  19. 19.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Linguistic description of color images generated by a granular recognition system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 603–615. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_54CrossRefGoogle Scholar
  20. 20.
    Wiaderek, K., Rutkowska, D.: Linguistic description of images based on fuzzy histograms. In: Choraś, M., Choraś, R. (eds.) IP&C 2017. AISC, vol. 681, pp. 27–34. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68720-9_4Google Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  22. 22.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  23. 23.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zadrozny, S., De Tre, G., De Caluve, R., Kacprzyk, J.: An overview of fuzzy approaches to flexible database querying. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, vol. I, pp. 34–54. Information Science Reference (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Krzysztof Wiaderek
    • 1
    Email author
  • Danuta Rutkowska
    • 1
    • 2
  • Elisabeth Rakus-Andersson
    • 3
  1. 1.Institute of Computer and Information SciencesCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Information Technology InstituteUniversity of Social SciencesLodzPoland
  3. 3.Department of Mathematics and Natural SciencesBlekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations