Advertisement

A Fuzzy SOM for Understanding Incomplete 3D Faces

  • Janusz T. StarczewskiEmail author
  • Katarzyna Nieszporek
  • Michał Wróbel
  • Konrad Grzanek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

This paper presents a new recognition method for three-dimensional geometry of the human face. The method measures biometric distances between features in 3D. It relies on the common self-organizing map method with fixed topological distances. It is robust to missing parts of the face due to the introduction of an original fuzzy certainty mask.

Keywords

Biometric 3D face Self-organizing map Fuzzy certainty map 

References

  1. 1.
    Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and topsis for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)CrossRefGoogle Scholar
  2. 2.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. 64(1), 5–30 (2005)CrossRefGoogle Scholar
  3. 3.
    Chang, O., Constante, P., Gordon, A., Singaña, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. Artif. Intell. Soft Comput. 7, 125–136 (2017). (LNCS, Springer)CrossRefGoogle Scholar
  4. 4.
    Faltemier, T., Bowyer, K., Flynn, P.: Rotated profile signatures for robust 3D feature detection. In: 8th IEEE International Conference on Automatic Face Gesture Recognition, FG 2008, pp. 1–7, September 2008Google Scholar
  5. 5.
    Gupta, S., Markey, M.K., Bovik, A.C.: Anthropometric 3D face recognition. Int. J. Comput. Vis. 90(3), 331–349 (2010)CrossRefGoogle Scholar
  6. 6.
    Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20, 1239–1253 (2008)CrossRefGoogle Scholar
  7. 7.
    Okuwobi, I.P., Chen, Q., Niu, S., Bekalo, L.: Three-dimensional (3D) facial recognition and prediction. SIViP 10(6), 1151–1158 (2016)CrossRefGoogle Scholar
  8. 8.
    Prasad, M., Liu, Y.T., Li, D.L., Lin, C.T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)CrossRefGoogle Scholar
  9. 9.
    Rivero, C.R., Pucheta, J., Laboret, S., Sauchelli, V., Patiño, D.: Energy associated tuning method for short-term series forecasting by complete and incomplete datasets. J. Artif. Intell. Soft Comput. Res. 7(1), 5–16 (2017)CrossRefGoogle Scholar
  10. 10.
    Spreeuwers, L.: Breaking the 99% barrier: optimisation of 3D face recognition. IET Biometr. 4(3), 169–177 (2015)CrossRefGoogle Scholar
  11. 11.
    Starczewski, J.T.: Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. Studies in Fuzziness and Soft Computing, vol. 284. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-29520-1CrossRefzbMATHGoogle Scholar
  12. 12.
    Starczewski, J.T., Pabiasz, S., Vladymyrska, N., Marvuglia, A., Napoli, C., Woźniak, M.: Self organizing maps for 3D face understanding. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 210–217. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_19CrossRefGoogle Scholar
  13. 13.
    Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an alternative to SVM and deep learning? - recent trends and advanced variants of learning vector quantization for classification learning. J. Artif. Intell. Soft Comput. Res. 7(1), 65–81 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Janusz T. Starczewski
    • 1
    • 2
    Email author
  • Katarzyna Nieszporek
    • 1
  • Michał Wróbel
    • 1
  • Konrad Grzanek
    • 3
    • 4
  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland
  2. 2.Radom Academy of EconomicsRadomPoland
  3. 3.Information Technology InstituteUniversity of Social SciencesLódzPoland
  4. 4.Clark UniversityWorcesterUSA

Personalised recommendations