Constraint-Based Identification of Complex Gateway Structures in Business Process Models

  • Piotr WiśniewskiEmail author
  • Antoni Ligęza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


In this paper, we present a method for identifying parallel and alternative gateway structures in BPMN models. It can be applied in the composition of business processes from their declarative specifications. Our approach is based on a directed graph representation of a business process as well as the constraint programming technique. Provided the information about process activities and relations between them, the proposed approach consists in finding a structure of logical data-based gateways that satisfies the set of predefined constraints. A detailed illustration of our method is preceded by a brief description of BPMN and its formal representation.


Business process management Graph theory Decision support Structure identification 


  1. 1.
    de Boer, M., Escher, C., Schutte, K.: Modelling temporal structures in video event retrieval using an AND-OR graph. In: The Ninth International Conferences on Advances in Multimedia, MMEDIA 2017. IARIA XPS Press: Sl (2017)Google Scholar
  2. 2.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  3. 3.
    Favre, C., Völzer, H.: The difficulty of replacing an inclusive OR-join. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 156–171. Springer, Heidelberg (2012). Scholar
  4. 4.
    Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge discovery. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 819–845. Springer, Heidelberg (2003). Scholar
  5. 5.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). Scholar
  6. 6.
    Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: UAI 2014, pp. 340–349 (2014)Google Scholar
  7. 7.
    BPM Academic Initiative: BPM Academic Initiative Model Collection.
  8. 8.
    Kalenkova, A.A., van der Aalst, W.M., Lomazova, I.A., Rubin, V.A.: Process mining using BPMN: relating event logs and process models. Softw. Syst. Model. 16(4), 1019–1048 (2017)CrossRefGoogle Scholar
  9. 9.
    Kalenkova, A.A., de Leoni, M., van der Aalst, W.M.: Discovering, analyzing and enhancing BPMN models using ProM? In: Business Process Management-12th International Conference, BPM, pp. 7–11 (2014)Google Scholar
  10. 10.
    Klimek, R.: A system for deduction-based formal verification of workflow-oriented software models. Int. J. Appl. Math. Comput. Sci. 24(4), 941–956 (2014)CrossRefGoogle Scholar
  11. 11.
    Kluza, K., Honkisz, K.: From SBVR to BPMN and DMN models. Proposal of translation from rules to process and decision models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 453–462. Springer, Cham (2016). Scholar
  12. 12.
    Kluza, K., Nalepa, G.J.: A method for generation and design of business processes with business rules. Inf. Softw. Technol. 91, 123–141 (2017)CrossRefGoogle Scholar
  13. 13.
    Kluza, K., Nalepa, G.J.: Formal model of business processes integrated with business rules. Inf. Syst. Front. 1–19 (2018).
  14. 14.
    Kluza, K., Nalepa, G.J., Ślażyński, M., Kutt, K., Kucharska, E., Kaczor, K., Łuszpaj, A.: Overview of selected business process semantization techniques. In: Pełech-Pilichowski, T., Mach-Król, M., Olszak, C.M. (eds.) Advances in Business ICT: New Ideas from Ongoing Research. SCI, vol. 658, pp. 45–64. Springer, Cham (2017). Scholar
  15. 15.
    Kluza, K., Wiśniewski, P.: Spreadsheet-based business process modeling. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1355–1358. IEEE (2016)Google Scholar
  16. 16.
    Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5(May), 549–573 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kundu, D., Samanta, D.: A novel approach to generate test cases from UML activity diagrams. J. Object Technol. 8(3), 65–83 (2009)CrossRefGoogle Scholar
  18. 18.
    Liang, Q.A., Su, S.Y.: And/or graph and search algorithm for discovering composite web services. Int. J. Web Serv. Res. 2(4), 48 (2005)CrossRefGoogle Scholar
  19. 19.
    Ligęza, A.: An experiment in causal structure discovery. a constraint programming approach. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 261–268. Springer, Cham (2017). Scholar
  20. 20.
    Ligęza, A., Kluza, K., Potempa, T.: AI approach to formal analysis of BPMN models. Towards a logical model for BPMN diagrams. In: Proceedings of the Federated Conference on Computer Science and Information Systems - FedCSIS 2012, Wroclaw, Poland, 9–12 September 2012, pp. 931–934 (2012)Google Scholar
  21. 21.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.: User-guided discovery of declarative process models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 192–199. IEEE (2011)Google Scholar
  22. 22.
    Mroczek, A., Ligeza, A.: A note on BPMN analysis. Towards a taxonomy of selected potential anomalies. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1097–1102. IEEE (2014)Google Scholar
  23. 23.
    Nawrocki, J.R., Nedza, T., Ochodek, M., Olek, L.: Describing business processes with use cases. In: BIS 2006, pp. 13–27 (2006)Google Scholar
  24. 24.
    OMG: business process model and notation (BPMN): version 2.0 specification. Technical report formal/2011-01-03, Object Management Group, January 2011Google Scholar
  25. 25.
    Pearl, J.: Causality: models, reasoning, and inference. Econom. Theor. 19(675–685), 46 (2003)Google Scholar
  26. 26.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). Scholar
  27. 27.
    Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans. Program. Lang. Syst. 31(1), 2:1–2:43 (2008). Scholar
  28. 28.
    Mroczek, S.A., Wiśniewski, P., Ligęza, A.: Overview of verification tools for business process models. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 13, pp. 295–302. PTI, Mumbai (2017). Scholar
  29. 29.
    Trkman, M., Mendling, J., Krisper, M.: Using business process models to better understand the dependencies among user stories. Inf. Softw. Technol. 71, 58–76 (2016)CrossRefGoogle Scholar
  30. 30.
    Tsukimoto, H.: The discovery of logical propositions in numermal data. In: AAAI-94 Workshop on Knowledge Discovery in Databases, pp. 205–216 (1994)Google Scholar
  31. 31.
    Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product based workflow support: dynamic workflow execution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008). Scholar
  32. 32.
    Weber, I.M.: Semantic Methods for Execution-level Business Process Modeling: Modeling Support Through Process Verification and Service Composition. LNBIP, vol. 40. Springer, Heidelberg (2009). Scholar
  33. 33.
    Wiśniewski, P.: Decomposition of business process models into reusable sub-diagrams. In: ITM Web of Conferences, vol. 15, p. 01002. EDP Sciences (2017)Google Scholar
  34. 34.
    Wiśniewski, P., Kluza, K., Ślażyński, M., Ligęza, A.: Constraint-based composition of business process models. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 133–141. Springer, Cham (2018). Scholar
  35. 35.
    Wong, P.Y., Gibbons, J.: Formalisations and applications of BPMN. Sci. Comput. Program. 76(8), 633–650 (2011)CrossRefGoogle Scholar
  36. 36.
    Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating expressiveness and understandability of hierarchy in declarative business process models. Softw. Syst. Model. 14(3), 1081–1103 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations