Advertisement

Constraint-Based Identification of Complex Gateway Structures in Business Process Models

  • Piotr WiśniewskiEmail author
  • Antoni Ligęza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

In this paper, we present a method for identifying parallel and alternative gateway structures in BPMN models. It can be applied in the composition of business processes from their declarative specifications. Our approach is based on a directed graph representation of a business process as well as the constraint programming technique. Provided the information about process activities and relations between them, the proposed approach consists in finding a structure of logical data-based gateways that satisfies the set of predefined constraints. A detailed illustration of our method is preceded by a brief description of BPMN and its formal representation.

Keywords

Business process management Graph theory Decision support Structure identification 

References

  1. 1.
    de Boer, M., Escher, C., Schutte, K.: Modelling temporal structures in video event retrieval using an AND-OR graph. In: The Ninth International Conferences on Advances in Multimedia, MMEDIA 2017. IARIA XPS Press: Sl (2017)Google Scholar
  2. 2.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  3. 3.
    Favre, C., Völzer, H.: The difficulty of replacing an inclusive OR-join. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 156–171. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32885-5_12CrossRefGoogle Scholar
  4. 4.
    Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge discovery. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 819–845. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-642-18965-4_33CrossRefGoogle Scholar
  5. 5.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21640-4_36CrossRefGoogle Scholar
  6. 6.
    Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: UAI 2014, pp. 340–349 (2014)Google Scholar
  7. 7.
    BPM Academic Initiative: BPM Academic Initiative Model Collection. http://bpmai.org/BPMAcademicInitiative/
  8. 8.
    Kalenkova, A.A., van der Aalst, W.M., Lomazova, I.A., Rubin, V.A.: Process mining using BPMN: relating event logs and process models. Softw. Syst. Model. 16(4), 1019–1048 (2017)CrossRefGoogle Scholar
  9. 9.
    Kalenkova, A.A., de Leoni, M., van der Aalst, W.M.: Discovering, analyzing and enhancing BPMN models using ProM? In: Business Process Management-12th International Conference, BPM, pp. 7–11 (2014)Google Scholar
  10. 10.
    Klimek, R.: A system for deduction-based formal verification of workflow-oriented software models. Int. J. Appl. Math. Comput. Sci. 24(4), 941–956 (2014)CrossRefGoogle Scholar
  11. 11.
    Kluza, K., Honkisz, K.: From SBVR to BPMN and DMN models. Proposal of translation from rules to process and decision models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 453–462. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_39CrossRefGoogle Scholar
  12. 12.
    Kluza, K., Nalepa, G.J.: A method for generation and design of business processes with business rules. Inf. Softw. Technol. 91, 123–141 (2017)CrossRefGoogle Scholar
  13. 13.
    Kluza, K., Nalepa, G.J.: Formal model of business processes integrated with business rules. Inf. Syst. Front. 1–19 (2018).  https://doi.org/10.1007/s10796-018-9826-y
  14. 14.
    Kluza, K., Nalepa, G.J., Ślażyński, M., Kutt, K., Kucharska, E., Kaczor, K., Łuszpaj, A.: Overview of selected business process semantization techniques. In: Pełech-Pilichowski, T., Mach-Król, M., Olszak, C.M. (eds.) Advances in Business ICT: New Ideas from Ongoing Research. SCI, vol. 658, pp. 45–64. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-47208-9_4CrossRefGoogle Scholar
  15. 15.
    Kluza, K., Wiśniewski, P.: Spreadsheet-based business process modeling. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1355–1358. IEEE (2016)Google Scholar
  16. 16.
    Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5(May), 549–573 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kundu, D., Samanta, D.: A novel approach to generate test cases from UML activity diagrams. J. Object Technol. 8(3), 65–83 (2009)CrossRefGoogle Scholar
  18. 18.
    Liang, Q.A., Su, S.Y.: And/or graph and search algorithm for discovering composite web services. Int. J. Web Serv. Res. 2(4), 48 (2005)CrossRefGoogle Scholar
  19. 19.
    Ligęza, A.: An experiment in causal structure discovery. a constraint programming approach. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 261–268. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60438-1_26CrossRefGoogle Scholar
  20. 20.
    Ligęza, A., Kluza, K., Potempa, T.: AI approach to formal analysis of BPMN models. Towards a logical model for BPMN diagrams. In: Proceedings of the Federated Conference on Computer Science and Information Systems - FedCSIS 2012, Wroclaw, Poland, 9–12 September 2012, pp. 931–934 (2012)Google Scholar
  21. 21.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.: User-guided discovery of declarative process models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 192–199. IEEE (2011)Google Scholar
  22. 22.
    Mroczek, A., Ligeza, A.: A note on BPMN analysis. Towards a taxonomy of selected potential anomalies. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1097–1102. IEEE (2014)Google Scholar
  23. 23.
    Nawrocki, J.R., Nedza, T., Ochodek, M., Olek, L.: Describing business processes with use cases. In: BIS 2006, pp. 13–27 (2006)Google Scholar
  24. 24.
    OMG: business process model and notation (BPMN): version 2.0 specification. Technical report formal/2011-01-03, Object Management Group, January 2011Google Scholar
  25. 25.
    Pearl, J.: Causality: models, reasoning, and inference. Econom. Theor. 19(675–685), 46 (2003)Google Scholar
  26. 26.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006).  https://doi.org/10.1007/11837862_18CrossRefGoogle Scholar
  27. 27.
    Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Trans. Program. Lang. Syst. 31(1), 2:1–2:43 (2008).  https://doi.org/10.1145/1452044.1452046CrossRefGoogle Scholar
  28. 28.
    Mroczek, S.A., Wiśniewski, P., Ligęza, A.: Overview of verification tools for business process models. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 13, pp. 295–302. PTI, Mumbai (2017).  https://doi.org/10.15439/2017F308CrossRefGoogle Scholar
  29. 29.
    Trkman, M., Mendling, J., Krisper, M.: Using business process models to better understand the dependencies among user stories. Inf. Softw. Technol. 71, 58–76 (2016)CrossRefGoogle Scholar
  30. 30.
    Tsukimoto, H.: The discovery of logical propositions in numermal data. In: AAAI-94 Workshop on Knowledge Discovery in Databases, pp. 205–216 (1994)Google Scholar
  31. 31.
    Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product based workflow support: dynamic workflow execution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69534-9_42CrossRefGoogle Scholar
  32. 32.
    Weber, I.M.: Semantic Methods for Execution-level Business Process Modeling: Modeling Support Through Process Verification and Service Composition. LNBIP, vol. 40. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05085-5CrossRefGoogle Scholar
  33. 33.
    Wiśniewski, P.: Decomposition of business process models into reusable sub-diagrams. In: ITM Web of Conferences, vol. 15, p. 01002. EDP Sciences (2017)Google Scholar
  34. 34.
    Wiśniewski, P., Kluza, K., Ślażyński, M., Ligęza, A.: Constraint-based composition of business process models. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 133–141. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_9CrossRefGoogle Scholar
  35. 35.
    Wong, P.Y., Gibbons, J.: Formalisations and applications of BPMN. Sci. Comput. Program. 76(8), 633–650 (2011)CrossRefGoogle Scholar
  36. 36.
    Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating expressiveness and understandability of hierarchy in declarative business process models. Softw. Syst. Model. 14(3), 1081–1103 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations