Dual-Heuristic Dynamic Programming in the Three-Wheeled Mobile Transport Robot Control

  • Marcin SzusterEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


In this work an intelligent discrete tracking control system of a three-wheeled mobile transport robot is presented. The robot is a model of a forklift truck, with a drive wheel mounted in the rear part of the frame in movable steering module. The dynamics of the mobile transport robot was described using the second order Lagrange’s equations. In the tracking control system of the robot the Dual-Heuristic Dynamic Programming algorithm was used, which belongs to the family of Approximate Dynamic Programming algorithms. In the Dual-Heuristic Dynamic Programming algorithm Random Vector Functional Link Neural Networks were used to realize an actor and a critic structure. Numerical tests of robot motion on the desire trajectory were performed. The results of the numerical tests confirmed the correctness of the assumed design assumptions.


Actor-critic structure Approximate dynamic programing Dual-Heuristic Dynamic Programming Neural network Mobile robot 


  1. 1.
    Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive elements that can solve difficult learning problems. IEEE Trans. Syst. Man Cybern. 13, 834–846 (1983)CrossRefGoogle Scholar
  2. 2.
    Bellman, R.: Dynamic Programming. Princeton University Press, New York (1957)zbMATHGoogle Scholar
  3. 3.
    Giergiel, J., Hendzel, Z., Zylski, W.: Modeling and Control of Wheeled Mobile Robots. Scientific Publishing PWN, Warsaw (2002). (in Polish)Google Scholar
  4. 4.
    Giergiel, J., Kurc, K.: Identification of the mathematical model of an inspection mobile robot with fuzzy logic systems and neural networks. J. Theor. Appl. Mech. 49, 209–225 (2011)Google Scholar
  5. 5.
    Gierlak, P., Szuster, M., Żylski, W.: Discrete dual–heuristic programming in 3DOF manipulator control. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 256–263. Springer, Heidelberg (2010). Scholar
  6. 6.
    Hendzel, Z., Burghardt, A., Szuster, M.: Reinforcement learning in discrete neural control of the underactuated system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 64–75. Springer, Heidelberg (2013). Scholar
  7. 7.
    Iftekharuddin, K.M.: Transformation invariant on-line target recognition. IEEE Trans. Neural Netw. 22, 906–918 (2011)CrossRefGoogle Scholar
  8. 8.
    Lendaris, G., Schultz, L., Shannon, T.: Adaptive critic design for intelligent steering and speed control of a 2-axle vehicle. In: Proceedings of the IEEE INNS-ENNS International Joint Conference on Neural Networks, vol. 3, pp. 73–78 (2000)Google Scholar
  9. 9.
    Lewis, F.W., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press, London (1998)Google Scholar
  10. 10.
    Osowski, S.: Neural Networks - An Algorithmic Approach. WNT, Warsaw (1996). (in Polish)Google Scholar
  11. 11.
    Powell, W.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  12. 12.
    Prokhorov, D., Wunsch, D.: Adaptive critic designs. IEEE Trans. Neural Netw. 8, 997–1007 (1997)CrossRefGoogle Scholar
  13. 13.
    Si, J., Barto, A., Powell, W., Wunsch, D.: Handbook of learning and approximate dynamic programming. Wiley, IEEE Press, Hoboken (2004)CrossRefGoogle Scholar
  14. 14.
    Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)CrossRefGoogle Scholar
  15. 15.
    Szuster, M., Gierlak, P.: Approximate dynamic programming in tracking control of a robotic manipulator. Int. J. Adv. Robot. Syst. 16, 1–18 (2016)Google Scholar
  16. 16.
    Szuster, M., Hendzel, Z.: Discrete globalised dual heuristic dynamic programming in control of the two-wheeled mobile robot. Math. Probl. Eng. 2014, 1–16 (2014)CrossRefGoogle Scholar
  17. 17.
    Tutak, J., Wiech, J.: Horizontal automated storage and retrival system. Adv. Sci. Technol. - Res. J. 11, 82–95 (2017)CrossRefGoogle Scholar
  18. 18.
    Venayagamoorthy, G.K., Harley, R.G., Wunsch, D.C.: Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics of a turbogenerator. IEEE Trans. Neural Netw. 13, 764–773 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rzeszow University of TechnologyRzeszowPoland

Personalised recommendations