Leader-Follower Formation for UAV Robot Swarm Based on Fuzzy Logic Theory

  • Wilson O. Quesada
  • Jonathan I. Rodriguez
  • Juan C. Murillo
  • Gustavo A. Cardona
  • David Yanguas-Rojas
  • Luis G. Jaimes
  • Juan M. CalderónEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


This paper proposes an algorithm based on a fuzzy logic approach, capable to guide a robot swarm with the aim to keep a leader-follower formation without colliding with other swarm agents. The fuzzy system is programmed and evaluated originally in Matlab, where several experiments were performed. The results depicted a robot swarm showing some bio-inspired behaviors, such as swarm agents surrounding the leader when it is in a static position or when it is traveling from one place to another place. Finally, the proposed fuzzy system was implemented on a drone swarm using V-Rep. The drones simulation shows the swarm navigating together and keeping the leader in the center of the swarm when it is static and following the leader when it is moving. These results could be evaluated in a future work using drone robot swarm in real environments.


Swarm robotics Autonomous mobile robots Fuzzy logic theory Drone swarm 


  1. 1.
    Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)CrossRefGoogle Scholar
  2. 2.
    Martinelli, A., Pont, F., Siegwart, R.: Multi-robot localization using relative observations. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005, ICRA 2005, pp. 2797–2802. IEEE, April 2005Google Scholar
  3. 3.
    Quijano, N., Passino, K.M.: Honey bee social foraging algorithms for resource allocation, part I: algorithm and theory. In: American Control Conference 2007, ACC 2007, pp. 3383–3388. IEEE, July 2007Google Scholar
  4. 4.
    Quijano, N., Passino, K.M.: Honey bee social foraging algorithms for resource allocation, part II: application. In: American Control Conference 2007, ACC 2007, pp. 3389–3394. IEEE, July 2007Google Scholar
  5. 5.
    León, J., Cardona, G.A., Botello, A., Calderón, J.M.: Robot swarms theory applicable to seek and rescue operation. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 1061–1070. Springer, Cham (2017). Scholar
  6. 6.
    Yanguas-Rojas, D., Cardona, G.A., Ramirez-Rugeles, J., Mojica-Nava, E.: Victims search, identification, and evacuation with heterogeneous robot networks for search and rescue. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, pp. 1–6 (2017).
  7. 7.
    Tanner, H.G., Kumar, A.: Towards decentralization of multi-robot navigation functions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005, ICRA 2005, pp. 4132–4137. IEEE, April 2005Google Scholar
  8. 8.
    Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp. 852–858, July 2000Google Scholar
  9. 9.
    Giulietti, F., Pollini, L., Innocenti, M.: Autonomous formation flight. IEEE Control Syst. 20(6), 34–44 (2000)CrossRefGoogle Scholar
  10. 10.
    Cui, R., Ge, S.S., How, B.V.E., Choo, Y.S.: Leaderfollower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17), 1491–1502 (2010)CrossRefGoogle Scholar
  11. 11.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  12. 12.
    Drfler, F., Francis, B.: Formation control of autonomous robots based on cooperative behavior. In: 2009 European Control Conference (ECC), pp. 2432–2437. IEEE, August 2009Google Scholar
  13. 13.
    Droge, G.: Distributed virtual leader moving formation control using behavior-based MPC. In: American Control Conference (ACC), pp. 2323–2328. IEEE, July 2015Google Scholar
  14. 14.
    Guzman-Hernandez, S., Mojica-Nava, E.: Formation control using replicatormutator dynamics for multiple mobile autonomous agents. Neurocomputing 172, 337–344 (2016)CrossRefGoogle Scholar
  15. 15.
    Yasuda, Y., Kubota, N.: Formation behavior of multi-robot for exploration and monitoring. In: 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), pp. 1232–1237. IEEE, November 2012Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wilson O. Quesada
    • 1
  • Jonathan I. Rodriguez
    • 1
  • Juan C. Murillo
    • 1
  • Gustavo A. Cardona
    • 2
  • David Yanguas-Rojas
    • 2
  • Luis G. Jaimes
    • 3
  • Juan M. Calderón
    • 1
    • 4
    Email author
  1. 1.Department of Electronic EngineeringUniversidad Santo TomásBogotaColombia
  2. 2.Department of Electrical and Electronics EngineeringUniversidad Nacional de ColombiaBogotaColombia
  3. 3.Florida Polytechnic UniversityLakelandUSA
  4. 4.Bethun-Cookman UniversityDaytona BeachUSA

Personalised recommendations