Advertisement

Exploiting OSC Models by Using Neural Networks with an Innovative Pruning Algorithm

  • Grazia Lo Sciuto
  • Giacomo Capizzi
  • Christian Napoli
  • Rafi Shikler
  • Dawid Połap
  • Marcin WoźniakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

In this paper we have investigated the relationship between the current and the active layer thickness of an organic solar cell (OSC) in order to improve its efficiency by means of a back propagation neural network. In order to preserve the generalization properties of the adopted neural network (NN) in this paper is presented also an innovative pruning technique. The extensive simulations performed show a good agreement between simulated and experimental data with an overall error of about 3%. The obtained results demostrate that the use of an MLP with associated an appropriate pruning algorithm to preserve its generalization capacities permits to accurately reproduce the relationship between the active layer thicknesses and the measured maximum power in an OSC. This neural model can be of great use in manufacturing processes.

Notes

Acknowledgment

This work has been supported by the BGU-ENEA joint lab and the ILSE-Joint Italian-Israeli Laboratory on Solar and Alternative Energies. We thank Dr. Jurgen Jopp of Ilse Katz Institute for Nanoscale Science and Technology. The Authors would like to acknowledge contribution to this research from the “Di-amond Grant 2016” No. 0080/DIA/2016/45 funded by the Polish Ministry of Science and Higher Education.

References

  1. 1.
    Barnea, S.N., Lo Sciuto, G., Hai, N., Shikler, R., Capizzi, G., Woźniak, M., Połap, D.: Photo-electro characterization and modeling of organic light-emitting diodes by using a radial basis neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017 Part II. LNCS (LNAI), vol. 10246, pp. 378–389. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59060-8_34CrossRefGoogle Scholar
  2. 2.
    Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonanno, F., Capizzi, G., Lo Sciuto, G.: A neuro wavelet-based approach for short-term load forecasting in integrated generation systems. In: 2013 International Conference on Clean Electrical Power (ICCEP), pp. 772–776, June 2013Google Scholar
  4. 4.
    Bonanno, F., Capizzi, G., Lo Sciuto, G., Napoli, C., Pappalardo, G., Tramontana, E.: A cascade neural network architecture investigating surface plasmon polaritons propagation for thin metals in OpenMP. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014 Part I. LNCS (LNAI), vol. 8467, pp. 22–33. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_3CrossRefGoogle Scholar
  5. 5.
    Capizzi, G., Lo Sciuto, G., Napoli, C., Tramontana, E.: A multithread nested neural network architecture to model surface plasmon polaritons propagation. Micromachines 7(7), 110 (2016)CrossRefGoogle Scholar
  6. 6.
    Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2(4), 303–314 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Duda, P., Jaworski, M., Rutkowski, L.: Convergent time-varying regression models for data streams: tracking concept drift by the recursive parzen-based generalized regression neural networks. Int. J. Neural Syst. 28(02), 1750048 (2018)CrossRefGoogle Scholar
  8. 8.
    Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)Google Scholar
  9. 9.
    Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, pp. 164–171 (1993)Google Scholar
  10. 10.
    Haykin, S.S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)zbMATHGoogle Scholar
  11. 11.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)CrossRefGoogle Scholar
  12. 12.
    Huang, G.-B., Saratchandran, P., Sundararajan, N.: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans. Neural Netw. 16(1), 57–67 (2005)CrossRefGoogle Scholar
  13. 13.
    Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., Steinbrecher, M.: Computational Intelligence: A Methodological Introduction. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-1-4471-5013-8CrossRefzbMATHGoogle Scholar
  14. 14.
    Lo Sciuto, G., Capizzi, G., Coco, S., Shikler, R.: Geometric shape optimization of organic solar cells for efficiency enhancement by neural networks. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds.) Advances on Mechanics, Design Engineering and Manufacturing. LNCS, pp. 789–796. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-45781-9_79CrossRefGoogle Scholar
  15. 15.
    Nowicki, R.K., Starczewski, J.T.: A new method for classification of imprecise data using fuzzy rough fuzzification. Inf. Sci. 414, 33–52 (2017)CrossRefGoogle Scholar
  16. 16.
    Ryan, F.: Procedural operation manualette@ONLINE (2009)Google Scholar
  17. 17.
    Lo Sciuto, G., Capizzi, G., Gotleyb, D., Linde, S., Shikler, R., Woźniak, M., Połap, D.: Combining SVD and co-occurrence matrix information to recognize organic solar cells defects with a elliptical basis function network classifier. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017 Part II. LNCS (LNAI), vol. 10246, pp. 518–532. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59060-8_47CrossRefGoogle Scholar
  18. 18.
    Toscano, E., Lo Bello, L.: A topology management protocol with bounded delay for wireless sensor networks. In: IEEE International Conference on Emerging Technologies and Factory Automation. ETFA 2008, pp. 942–951 (2008)Google Scholar
  19. 19.
    Zȩbik, M., Korytkowski, M., Angryk, R., Scherer, R.: Convolutional Neural networks for time series classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017 Part II. LNCS (LNAI), vol. 10246, pp. 635–642. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59060-8_57CrossRefGoogle Scholar
  20. 20.
    Zurada, J.M., Malinowski, A., Cloete, I.: Sensitivity analysis for minimization of input data dimension for feedforward neural network. In: 1994 IEEE International Symposium on Circuits and Systems, ISCAS 1994, vol. 6, pp. 447–450. IEEE (1994)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Grazia Lo Sciuto
    • 1
  • Giacomo Capizzi
    • 1
    • 4
  • Christian Napoli
    • 2
  • Rafi Shikler
    • 3
  • Dawid Połap
    • 1
    • 4
  • Marcin Woźniak
    • 1
    • 4
    Email author
  1. 1.Department of Electrical Electronics and Informatics EngineeringUniversity of CataniaCataniaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  3. 3.Department of Electrical and Computer EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Institute of MathematicsSilesian University of TechnologyGliwicePoland

Personalised recommendations