Advertisement

Building Knowledge Extraction from BIM/IFC Data for Analysis in Graph Databases

  • Ali Ismail
  • Barbara Strug
  • Grażyna ŚlusarczykEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

This paper deals with the problem of knowledge extraction and processing building related data. Information is retrieved from the IFC files, which are an industry standard for storing building information models (BIM). The IfcWebServer is used as a tool for transforming building information into the graph model. This model is stored in a graph database which allows for obtaining knowledge by defining specific graph queries. The process is illustrated by examples of extracting information needed to find different types of routes in an office building.

Keywords

Knowledge extraction Graph databases Building Information Modelling (BIM) Industry Foundation Classes (IFC) 

References

  1. 1.
    AlShboul, A.A., Al-Tahat, M.D.: Modelling of public building evacuation processes. Architectural Sci. Rev. 50, 37–43 (2007)CrossRefGoogle Scholar
  2. 2.
    Cepolina, E.M.: A methodology for defining building evacuation routes. Civ. Eng. Environ. Syst. 22, 29–47 (2005)CrossRefGoogle Scholar
  3. 3.
    Chiu, Y.C., Zheng, H., Villalobos, J., Gautam, B.: Modeling no-notice mass evacuation using a dynamic traffic flow optimization model. IIE Trans. 39, 83–94 (2007)CrossRefGoogle Scholar
  4. 4.
    Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors (2011)Google Scholar
  5. 5.
    Eastman, C.: The Evolution of AEC Interoperability. EG-ICE, Herrsching (2012)Google Scholar
  6. 6.
    Galea, E.R., Owen, M., Gwynne, S.: Principles and Practice of Evacuation Modeling, 2nd edn. CMS Press, Greenwich (1999)Google Scholar
  7. 7.
    Gillieron, P., Merminod, B.: Personal navigation system for indoor applications. In: 11th IAIN World Congress (2004)Google Scholar
  8. 8.
    Hu, Z., Zhang, J.: BIM- and 4D-based integrated solution of analysis and management for conflicts and structural safety problems during construction:2. Development and site trials. Autom. Constr. 20, 167–180 (2011)CrossRefGoogle Scholar
  9. 9.
    IFC. http://www.buildingsmart.org/standards/ifc. Accessed 10 Sept 2013
  10. 10.
    IFC 2x3 Model Implementation Guide. http://www.buildingsmarttech.org/implementation/ifc-implementation/ifc-impl-guide. Accessed 10 Sept 2013
  11. 11.
    IFC2x3 specification. http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/. Accessed 10 Sept 2013
  12. 12.
    Isaac, S., Sadeghpour, F., Navon, R.: Analyzing building information using graph theory. In: International Association for Automation and Robotics in Construction (IAARC)-30th ISARC, Montreal, pp. 1013–1020 (2013)Google Scholar
  13. 13.
    Ismail, A.: IFCWebServer. IFC Data model server and online viewer (2011). http://ifcwebserver.org
  14. 14.
    Ismail, A., Nahar, A., Scherer, R.J.: Application of graph databases and graph theory concepts for advanced analysing of BIM models based on IFC standard. In: Proceedings of EGICE 2017, Nottingham (2017)Google Scholar
  15. 15.
    buildingSMART. http://www.buildingsmart.org. Accessed 12 Sept 2013
  16. 16.
    Common Building Information Model. https://www.nibs.org/?page=bsa_commonbimfiles. Accessed 25 Jan 2018
  17. 17.
    Common Building Information Model: Office building model. http://projects.buildingsmartalliance.org/files/?artifact_id=4284
  18. 18.
  19. 19.
    Iwarsson, S., Stahl, A.: Accessibility, usability and universal design-positioning and definition of concepts describing person-environment relationships. Disabil. Rehabil. 25, 57–66 (2003)Google Scholar
  20. 20.
    Jeong, S., Ban, Y.: Computational algorithms to evaluate design solutions using Space Syntax. Comput.-Aided Des. 43, 664–676 (2011)CrossRefGoogle Scholar
  21. 21.
    Khalili, A., Chua, D.: IFC-based graph data model for topological queries on building elements. J. Comput. Civ. Eng. 29(3) (2015). American Society of Civil Engineers.  https://doi.org/10.1061/(ASCE)CP.1943-5487.0000331CrossRefGoogle Scholar
  22. 22.
    Koutamanis, A.: Multilevel analysis of fire escape routes in a virtual environment. In: Tan, M., Teh, R. (eds.) The Global Design Studio. Centre for Advanced Studies in Architecture, National University of Singapore, Singapore (1995)Google Scholar
  23. 23.
    Kuligowski, E.D., Peacock, R.D., Hoskins, B.L.: A Review of Building Evacuation Models NIST, Fire Research Division. Technical Note 1680, 2nd edn. National Institute of Standards and Technology, Washington, US (2010)Google Scholar
  24. 24.
    Langenhan, C., Weber, M., Liwicki, M., Petzold, F., Dengel, A.: Graph-based retrieval of building information models for supporting the early design stages. Adv. Eng. Inform. 27, 413–426 (2013)CrossRefGoogle Scholar
  25. 25.
    Ma, Z., Wei, Z., Song, W., Lou, Z.: Application and extension of the IFC standard in construction cost estimating for tendering in China. Autom. Constr. 20, 196–204 (2011)CrossRefGoogle Scholar
  26. 26.
    Papinigis, V., Geda, E., Lukošius, K.: Design of people evacuation from rooms and buildings. J. Civ. Eng. Manag. 16, 131–139 (2010)CrossRefGoogle Scholar
  27. 27.
    Robinson, I., Webber, J., Eifrem, E.: Graph Databases: New Opportunities for Connected Data, 2nd edn. O’Reilly Media, Sebastopol (2015)Google Scholar
  28. 28.
    Ronchi, E., Nilsson, D.: Fire evacuation in high-rise buildings: a review of human behaviour and modelling research. Fire Sci. Rev. 2(7), 1–21 (2013)Google Scholar
  29. 29.
    Rüppel, U., Abolghasemzadeh, P., Stübbe, K.: BIM-based Immersive Indoor Graph Networks for Emergency Situations in Buildings, pp. 65–71. Nottingham University Press, Nottingham (2010)Google Scholar
  30. 30.
    Sakkas, N., Perez, J.: Elaborating metrics for the accessibility of buildings. Comput. Environ. Urban Syst. 30, 661–685 (2006)CrossRefGoogle Scholar
  31. 31.
    Shen, T.S., Chien, S.W.: An evacuation simulation model (ESM) for building evaluation. Int. J. Archit. Sci. 6, 15–30 (2005)Google Scholar
  32. 32.
    Stringfield, W.H.: Emergency Planning and Management. Government Institutes, Rockville (1996)Google Scholar
  33. 33.
    Strug, B., Ślusarczyk, G.: Reasoning about accessibility for disabled using building graph models based on BIM/IFC. Vis. Eng. 5, 10 (2017).  https://doi.org/10.1186/s40327-017-0048-zCrossRefGoogle Scholar
  34. 34.
    Ślusarczyk, G., Łachwa, A., Palacz, W., Strug, B., Paszynska, A., Grabska, E.: An extended hierarchical graph-based building model for design and engineering problems. Autom. Constr. 74, 95–102 (2017)CrossRefGoogle Scholar
  35. 35.
    Tauscher, E., Bargstädt, H.-J., Smarsly, K.: Generic BIM queries based on the IFC object model using graph theory. In: The 16th International Conference on Computing in Civil and Building Engineering, Osaka, Japan (2016)Google Scholar
  36. 36.
    Zender, H., Martinez Mozos, O., Jensfelt, P., Kruijff, G.-J.M., Burgard, W.: Conceptual spatial representations for indoor mobile robots. Robot. Auton. Syst. 56(6), 493–502 (2008)CrossRefGoogle Scholar
  37. 37.
    Yatim, Y.M.: Optimum escape routes designs and specification for high-rise buildings. In: Proceeding of 2012 3rd International Conference in Construction Industry, Indonesia (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ali Ismail
    • 1
  • Barbara Strug
    • 2
  • Grażyna Ślusarczyk
    • 2
    Email author
  1. 1.Institute of Construction InformaticsTU DresdenDresdenGermany
  2. 2.Department of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakowPoland

Personalised recommendations