Evolutionary Quick Artificial Bee Colony for Constrained Engineering Design Problems

  • Otavio Noura TeixeiraEmail author
  • Mario Tasso Ribeiro Serra Neto
  • Demison Rolins de Souza Alves
  • Marco Antonio Florenzano Mollinetti
  • Fabio dos Santos Ferreira
  • Daniel Leal Souza
  • Rodrigo Lisboa Pereira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


The Artificial Bee Colony (ABC) is a well-known simple and efficient bee inspired metaheuristic that has been showed to achieve good performance on real valued optimization problems. Inspired by such, a Quick Artificial Bee Colony (QABC) was proposed by Karaboga to enhance the global search and bring better analogy to the dynamic of bees. To improve its local search capabilities, a modified version of it, called Evolutionary Quick Artificial Bee Colony (EQABC), is proposed. The novel algorithm employs the mutation operators found in Evolutionary Strategies (ES) that was applied in ABC from Evolutionary Particle Swarm Optimization (EPSO). In order to test the performance of the new algorithm, it was applied in four large-scale constrained optimization structural engineering problems. The results obtained by EQABC are compared to original ABC, QABC, and ABC + ES, one of the algorithms inspired for the development of EQABC.


Metaheuristics Artificial Bee Colony Quick Artificial Bee Colony Optimization Constrained optimization Structural Engineering Design 


  1. 1.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, Computer Engineering Department (2005)Google Scholar
  2. 2.
    Tereshko, V., Loengarov, A.: Collective decision making in honey-bee foraging dynamics. Comput. Inf. Syst. 9(3), 1 (2005)Google Scholar
  3. 3.
    Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)CrossRefGoogle Scholar
  5. 5.
    Mollinetti, M.A.F., Souza, D.L., Pereira, R.L., Yasojima, E.K.K., Teixeira, O.N.: ABC+ES: combining artificial bee colony algorithm and evolution strategies on engineering design problems and benchmark functions. In: Abraham, A., Han, S.Y., Al-Sharhan, S.A., Liu, H. (eds.) Hybrid Intelligent Systems. AISC, vol. 420, pp. 53–66. Springer, Cham (2016). Scholar
  6. 6.
    Karaboga, D., Gorkemli, B.: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Appl. Soft Comput. 23, 227–238 (2014)CrossRefGoogle Scholar
  7. 7.
    Binitha, S., et al.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)Google Scholar
  8. 8.
    Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. MDAI 7, 318–319 (2007)Google Scholar
  9. 9.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Garg, H.: Solving structural engineering design optimization problems using an artificial bee colony algorithm. J. Ind. Manag. Optim. 10(3), 777–794 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Karaboga, D., Gorkemli, B.: A quick artificial bee colony-qABC-algorithm for optimization problems. In: 2012 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp. 1–5. IEEE (2012)Google Scholar
  12. 12.
    Miranda, V., Fonseca, N.: EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems. In: Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, pp. 745–750. IEEE (2002)Google Scholar
  13. 13.
    Karaboga, D., et al.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)CrossRefGoogle Scholar
  14. 14.
    Yildiz, A.R.: A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl. Soft Comput. 13(5), 2906–2912 (2013)CrossRefGoogle Scholar
  15. 15.
    Jatoth, R.K., Rajasekhar, A.: Speed control of pmsm by hybrid genetic artificial bee colony algorithm. In: 2010 IEEE International Conference on Communication Control and Computing Technologies (ICCCCT), pp. 241–246. IEEE (2010)Google Scholar
  16. 16.
    Sundar, S., Singh, A.: A hybrid heuristic for the set covering problem. Oper. Res. 12(3), 345–365 (2012)zbMATHGoogle Scholar
  17. 17.
    Gandomi, A.H., Yang, X., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23), 2325–2336 (2011)CrossRefGoogle Scholar
  18. 18.
    Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2012)CrossRefGoogle Scholar
  19. 19.
    Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)CrossRefGoogle Scholar
  20. 20.
    Hedar, A., Fukushima, M.: Derivative-free filter simulated annealing method for constrained continuous global optimization. J. Glob. Optim. 35(4), 521–549 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Otavio Noura Teixeira
    • 1
    Email author
  • Mario Tasso Ribeiro Serra Neto
    • 2
  • Demison Rolins de Souza Alves
    • 2
  • Marco Antonio Florenzano Mollinetti
    • 3
  • Fabio dos Santos Ferreira
    • 2
  • Daniel Leal Souza
    • 4
  • Rodrigo Lisboa Pereira
    • 5
  1. 1.Federal University of Para (UFPA)TucuruiBrazil
  2. 2.University Centre of the State of Para (CESUPA)BelémBrazil
  3. 3.Tsukuba UniversityTsukubaJapan
  4. 4.Federal University of Para (UFPA)BelémBrazil
  5. 5.Federal Rural University of Amazonia (UFRA)ParagominasBrazil

Personalised recommendations