Advertisement

Symmetry of Hue Distribution in the Images

  • Piotr MilczarskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

In the paper, a new symmetry measure is proposed to evaluate the symmetry/asymmetry of the hue distribution within the segmented part of the image. A new symmetry/asymmetry area measure (ASM) as well as their parts: the asymmetry measures of: the shape distribution (ASMShape), hue distribution (ASMHue) and structures distribution (ASMStuct) are proposed and discussed. In the paper, a dermatological asymmetry measure in shape (DASMShape) and hue (DASMHue) are presented and discussed thoroughly as well as their ASMShape and ASMHue applications. The hue distribution of the symmetry/asymmetry of the segmented skin lesion is discussed. One of the DASMHue measures is thoroughly presented. The results of the DASMHue algorithm based on the threshold binary masks using PH2 dataset shows stronger overestimating results but the total ratio 95.8% of correctly and overestimated cases is better than the ratio which takes into account only shape alone.

Keywords

Asymmetry area measure of the hue distribution (ASMHueDermatological symmetry and asymmetry of skin lesion Dermatological asymmetry measure of hue distribution Pattern symmetry assessment Texture symmetry 

References

  1. 1.
    Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Bigun, J., DuBuf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervized texture segmentation. IEEE Pattern Anal. Mach. Intell. 16(1), 80–87 (1994)CrossRefGoogle Scholar
  4. 4.
    Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recogn. 10, 167–180 (1978)CrossRefGoogle Scholar
  5. 5.
    Brady, M., Asada, H.: Smoothed local symmetries and their implementation. Int. J. Robot. Res. 3(3), 36–61 (1984)CrossRefGoogle Scholar
  6. 6.
    Cardili, R.N., Roselino, A.M.: Elementary lesions in dermatological semiology: literature review. Anais brasileiros de dermatologia 91(5), 629–633 (2016)CrossRefGoogle Scholar
  7. 7.
    Chummun, S., McLean, N.R.: The management of malignant skin cancers. Surgery 29(10), 529–533 (2011)Google Scholar
  8. 8.
    Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. In: Celebi, M.E., Mendonca, T., Marques, J.S. (eds.) Dermoscopy Image Analysis, pp. 97–129. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  9. 9.
    Cross, A.D.J., Hancock, E.R.: Scale space vector fields for symmetry detection. Image Vis. Comput. 17(5–6), 337–345 (1999)CrossRefGoogle Scholar
  10. 10.
    Deserno, T.M.: Biomedical Image Processing. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-15816-2CrossRefzbMATHGoogle Scholar
  11. 11.
    Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)CrossRefGoogle Scholar
  12. 12.
    Di Gesù, V., Valenti, C.: Symmetry operators in computer vision. Vistas Astronom. 40(4), 461–468 (1996)CrossRefGoogle Scholar
  13. 13.
    Henning, J.S., et al.: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)CrossRefGoogle Scholar
  14. 14.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall of India, New Delhi (2002)zbMATHGoogle Scholar
  15. 15.
    Jaworek-Korjakowska, J., Kłeczek, P., Tadeusiewicz, R.: Detection and classification of pigment network in dermoscopic color images as one of the 7-point checklist criteria. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 174–181. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66905-2_15CrossRefGoogle Scholar
  16. 16.
    Jaworek-Korjakowska, J., Kłeczek, P., Grzegorzek, M., Shirahama, K.: Automatic detection of blue-whitish veil as the primary dermoscopic feature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 649–657. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_58CrossRefGoogle Scholar
  17. 17.
    Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of asymmetry in dermoscopic colour images of pigmented skin lesions. In: Proceedings of IASTED International Conference on Biomedical Engineering, BioMed 2013, pp. 368–375 (2013)Google Scholar
  18. 18.
    Jaworek-Korjakowska, J., Tadeusiewicz, R.: Determination of border irregularity in dermoscopic color images of pigmented skin lesions. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 6459–6462 (2014)Google Scholar
  19. 19.
    Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of dots and globules in dermoscopic color images as one of the 7-point check list criteria. In: Proceedings of IEEE International Conference on Image Processing, ICIP 2013, pp. 1456–1460 (2013)Google Scholar
  20. 20.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Manmatha, R., Sawhney, H.: Finding symmetry in intensity images. Technical report (1997)Google Scholar
  23. 23.
    Marola, G.: On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans. Pattern Anal. Mach. Intell. 11, 104–108 (1989)CrossRefGoogle Scholar
  24. 24.
    Mehta, R., Egiazarian, K.O.: Rotation invariant texture description using symmetric dense microblock difference. IEEE Sig. Process. Lett. 23(6), 833–837 (2016)CrossRefGoogle Scholar
  25. 25.
    Mendoncca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2 - a dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 5437–5440 (2013)Google Scholar
  26. 26.
    Menzies, S.W., Crotty, K.A., Ingvar, C., McCarthy, W.H.: An Atlas of Surface Microscopy of Pigmented Skin Lesions: Dermoscopy, 2nd edn. McGrawHill, Roseville (2003)Google Scholar
  27. 27.
    Milczarski, P.: Skin lesion symmetry of hue distribution. In: Proceedings of IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1006–1013 (2017)Google Scholar
  28. 28.
    Milczarski, P., Stawska, Z., Maślanka, P.: Skin lesions dermatological shape asymmetry measures. In: Proceedings of IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1056–1062 (2017)Google Scholar
  29. 29.
    Milczarski, P., Stawska, Z., Was, L., Wiak, S., Kot, M.: New dermatological asymmetry measure of skin lesions. Int. J. Neural Netw. Adv. Appl. 4, 32–38 (2017). (Prague)Google Scholar
  30. 30.
    Pathan, S., et al.: Biomed. Sig. Process. Control 39, 237–262 (2018). ElsevierGoogle Scholar
  31. 31.
    Rosendahl, C., Cameron, A., McColl, I., Wilkinson, D.: Dermatoscopy in routine practice “Chaos and Clues”. Aust. Fam. Phys. 41(7), 482487 (2012)Google Scholar
  32. 32.
    Schmid, P.: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans. Med. Imaging 18(2), 164–171 (1999)CrossRefGoogle Scholar
  33. 33.
    Shen, D., Ip, H., Cheung, K.T., Teoh, E.K.: Symmetry detection by generalized complex moments: a close-form solution. IEEE Pattern Anal. Mach. Intell. 21(5), 466–476 (1999)CrossRefGoogle Scholar
  34. 34.
    Shen, D., Ip, H., Teoh, E.K.: An energy of assymmetry for accurate detection of global reflexion axes. Image Vis. Comput. 19, 283–297 (2001)CrossRefGoogle Scholar
  35. 35.
    Sirakov, N.M., Mete, M., Chakrader, N.S.: Automatic boundary detection and symmetry calculation in dermoscopy images of skin lesions. In: 18th IEEE International Conference on Image Processing, Brussels, pp. 1605–1608 (2011)Google Scholar
  36. 36.
    Soyer, H.P., Argenziano, G., Hofmann-Wellenhof, R., Zalaudek, I.: Dermoscopy: The Essentials, 2nd edn. Saunders Ltd., Philadelphia (2011)Google Scholar
  37. 37.
    Soyer, H.P., Argenziano, G., Zalaudek, I., Corona, R., Sera, F., Talamini, R., et al.: Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology 208(1), 27–31 (2004)CrossRefGoogle Scholar
  38. 38.
    Stolz, W., Riemann, A., Cognetta, A.B., Pillet, L., Abmayr, W., Hölzel, D., et al.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J. Dermatol. 4, 521–527 (1994)Google Scholar
  39. 39.
    Was, L., Milczarski, P., Stawska, Z., Wyczechowski, M., Kot, M., Wiak, S., Wozniacka, A., Pietrzak, L.: Analysis of dermatoses using segmentation and color hue in reference to skin lesions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 677–689. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_61CrossRefGoogle Scholar
  40. 40.
    Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins, M.S.: Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans. Inf Technol. Biomed. 15, 622–629 (2011)CrossRefGoogle Scholar
  41. 41.
    Xie, F., Bovik, A.C.: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognit. 46, 1012–1019 (2013)CrossRefGoogle Scholar
  42. 42.
    Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Pattern Anal. Mach. Intell. 17(12), 1154–1166 (1995)CrossRefGoogle Scholar
  43. 43.
    Zavidovique, B., Di Gesù, V.: The S-kernel: ameasure of symmetry of objects. Pattern Recogn. 40, 839–852 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Physics and Applied InformaticsUniversity of LodzLodzPoland

Personalised recommendations