Temporal Traveling Salesman Problem – in a Logic- and Graph Theory-Based Depiction

  • Krystian JobczykEmail author
  • Piotr Wiśniewski
  • Antoni Ligȩza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


In this paper, a new temporal extension of Traveling Salesman Problem (TSP) – as an old optimization problem – is proposed. This proposal stems from a need to elucidate TSP not only as an optimization problem, but also as a potentially paradigmatic problem for the subject specification of temporal planning. This new Temporal Traveling Salesman Problem is described in two ways – in the graph-based depiction and in terms of logic to be interpreted later by the so-called fibred semantics.


  1. 1.
    Applegate, D., Bixby, M., Chvatal, V., Cook, W.: The traveling salesman problem, Edinburgh (2006). ISBN 0-691-12993-2Google Scholar
  2. 2.
    Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, Chichester (1979)zbMATHGoogle Scholar
  3. 3.
    Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Flood, M.M.: The travelling-salesman’s problem. Oper. Res. 5, 61–75 (1957)Google Scholar
  6. 6.
    Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38, 935–962 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heller, I.: The travelling salesman’s problem. In: Proceedings of the Second Symposium in Linear Programming, vol. 1, pp. 27–29 (1955)Google Scholar
  8. 8.
    Jobczyk, K., Ligeza, A.: Fuzzy-temporal approach to the handling of temporal interval relations and preferences. In: Proceeding of INISTA, pp. 1–8 (2015)Google Scholar
  9. 9.
    Jobczyk, K., Ligeza, A.: A general method of the hybrid controller construction for temporal planing with preferences. In: Proceeding of FedCSIS, pp. 61–70 (2016)Google Scholar
  10. 10.
    Jobczyk, K., Ligeza, A.: Multi-valued halpern-shoham logic for temporal allen’s relations and preferences. In: Proceedings of the Annual International Conference of Fuzzy Systems (FuzzIEEE) (2016, page to appear)Google Scholar
  11. 11.
    Jobczyk, K., Ligeza, A.: Dynamic epistemic preferential logic of action. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 243–254. Springer, Cham (2017). Scholar
  12. 12.
    Kaplan, H., Lewenstein, L., Shafrir, N., Sviridenko, M.: Approximation algorithms for assymetric TSP by decomposing directed regular multigraphs. In: Proceedings of 44th IEEE Symposium on Foundation of Computer Science, pp. 56–65 (2004)Google Scholar
  13. 13.
    Lomuscio, A., Michaliszyn, J.: An epistemic halpern-shoham logic. In: Proceedings of IJCAI-2013, pp. 1010–1016 (2013)Google Scholar
  14. 14.
    Menger, K.: Das botenproblem. Ergebnisse eines Mathematisches Kolloquiums 2, 11–12 (1932)Google Scholar
  15. 15.
    Papadimitriou, C.: The euclidean traveling salesman problem is NP-complete. Theor. Comput. Sci. 4(3), 237–244 (1977)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rubinstein, S., Hassin, R.: Better approximations for max TSP. Inf. Process. Lett. 75(4), 181–186 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Steinerberger, S.: New new bounds for the traveling salesman constant. Adv. Appl. Probab. 47, 27–36 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vidal, T., Craining, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attrobute vehicle routing problem. Eur. J. Oper. Res. 234, 658–673 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Krystian Jobczyk
    • 1
    • 2
    Email author
  • Piotr Wiśniewski
    • 2
  • Antoni Ligȩza
    • 2
  1. 1.University of Caen NormandyCaenFrance
  2. 2.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations