Advertisement

The Hybrid Plan Controller Construction for Trajectories in Sobolev Space

  • Krystian JobczykEmail author
  • Antoni Ligȩza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

This paper proposes a new integrated approach to the hybrid plan controller construction. It forms a synergy of the logic-based approach in terms of LTL-description and automata of Büchi with the integral-based approach. It is shown that the integral-based complementation may be naturally exploited in detection of the robot trajectories by the appropriate control functions.

References

  1. 1.
    Antonniotti, M., Mishra, B.: Discrete event models+ temporal logic = supervisory controller: automatic synthesis of locomotion controllers. In: Proceedings of IEEE International Conference on Robotics and Automation (1999)Google Scholar
  2. 2.
    Bacchus, F., Kabanza, F.: Using temporal logic to express search control knowledge for planning. Artif. Intell. 116, 123–191 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buchi, R.: On a Decision Method in Restricted Second-order Arithmetic. Stanford University Press, Stanford (1962)zbMATHGoogle Scholar
  4. 4.
    Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  5. 5.
    Fainekos, G., Kress-gazit, H., Pappas, G.: Hybrid controllers for path planning: a temporal logic approach. In: Proceeding of the IEEE International Conference on Decision and Control, Sevilla, pp. 4885–4890, December 2005Google Scholar
  6. 6.
    Fainekos, G., Kress-gazit, H., Pappas, G.: Hybrid controllers for path planning: a temporal logic approach. In: Proceedings of the IEEE International Conference on Decision and Control, Sevilla, pp. 4885–4890 (2005)Google Scholar
  7. 7.
    Fox, M., Long, D.: PDDL+: planning with time and metric sources. Technical report, University of Durham (2001a)Google Scholar
  8. 8.
    Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. Technical report, University of Durham (2001b)Google Scholar
  9. 9.
    Fox, M., Long, D.: The third international planning competition: temporal and metric planning. In: Preprints of The Sixth International Conference on Artificial Intelligence Planning and Scheduling, vol. 20, pp. 115–118 (2002)Google Scholar
  10. 10.
    Fox, M., Long, D.: An extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003)CrossRefGoogle Scholar
  11. 11.
    De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for temporally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 226–238. Springer, Heidelberg (2000).  https://doi.org/10.1007/10720246_18CrossRefGoogle Scholar
  12. 12.
    Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, Heidelberg (1965).  https://doi.org/10.1007/978-3-662-29794-0CrossRefzbMATHGoogle Scholar
  13. 13.
    Hristu-Varsakelis, D., Egersted, M., Krishnaprasad, S.: On the complexity of the motion description language MDLe. In: Proceedings of the 42 IEEE Conference on Decision and Control, pp. 3360–3365, December 2003Google Scholar
  14. 14.
    Jobczyk, K., Ligeza, A.: Fuzzy-temporal approach to the handling of temporal interval relations and preferences. In: Proceeding of INISTA, pp. 1–8 (2015)Google Scholar
  15. 15.
    Jobczyk, K., Ligeza, A.: A general method of the hybrid controller construction for temporal planing with preferences. In: Proceeding of FedCSIS, pp. 61–70 (2016)Google Scholar
  16. 16.
    Jobczyk, K., Ligeza, A.: Multi-valued halpern-shoham logic for temporal allen’s relations and preferences. In: Proceedings of the Annual International Conference of Fuzzy Systems (FuzzIEEE) (2016, to appear)Google Scholar
  17. 17.
    Jobczyk, K., Ligeza, A.: Systems of temporal logic for a use of engineering. toward a more practical approach. In: Stýskala, V., Kolosov, D., Snášel, V., Karakeyev, T., Abraham, A. (eds.) Intelligent Systems for Computer Modelling. AISC, vol. 423, pp. 147–157. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-27644-1_14CrossRefzbMATHGoogle Scholar
  18. 18.
    Jobczyk, K., Ligeza, A., Kluza, K.: Selected temporal logic systems: an attempt at engineering evaluation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 219–229. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39378-0_20CrossRefGoogle Scholar
  19. 19.
    Jobczyk, K., Ligęza, A., Bouzid, M., Karczmarczuk, J.: Comparative approach to the multi-valued logic construction for preferences. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 172–183. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_16CrossRefGoogle Scholar
  20. 20.
    Jourani, A.: Controllability and strong controllability of differential inclusions. Nonlinear Anal. Theory Methods Appl. 75, 1374–1384 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Maximova, L.: Temporal logics with operator ‘the next’ do not have interpolation or beth property. Sibirskii Matematicheskii Zhurnal 32(6), 109–113 (1991)MathSciNetGoogle Scholar
  22. 22.
    Montanari, A., Sala, P.: Interval logics and \(\omega \)B-regular languages. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 431–443. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37064-9_38CrossRefzbMATHGoogle Scholar
  23. 23.
    Pednault, F.: Synthetizing plans that contain actions with contex-dependent effects. Comput. Intell. 4(4), 356–372 (1988)CrossRefGoogle Scholar
  24. 24.
    Pednault, F.: Exploring the middle ground between STRIPS and the situation calculus. In: Proceedings of the International Conference on Knowledge Representation and Reasoning (KR), vol. 4, no. 5, pp. 324–332 (1989)Google Scholar
  25. 25.
    Pednault, F.: ADL-and the state-transition model of action. J. Log. Comput. 4(5), 467–512 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pnueli, A.: The temporal logic of program focs. pp. 46–57 (1977)Google Scholar
  27. 27.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the 1st Symposium on Logic in Computer Science, pp. 322–331, June 1986Google Scholar
  28. 28.
    Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Caen NormandyCaenFrance
  2. 2.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations