Advertisement

A Population Based Algorithm and Fuzzy Decision Trees for Nonlinear Modeling

  • Piotr DziwińskiEmail author
  • Łukasz BartczukEmail author
  • Krzysztof PrzybyszewskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

The paper presents a new approach for using the fuzzy decision trees for non-linear modeling based on the capabilities of participle swarm optimization and evolutionary algorithms. The most nonlinear dynamic objects have their approximate nonlinear model. Their parameters are known or can be determined by one of the typical identification procedure. The obtained approximate nonlinear model describes well the identified dynamic object only in the operating point. In this work, we use hybrid model composed with of two parts: approximate nonlinear model and fuzzy decision tree. The fuzzy decision tree contains correction values of the parameters in terminal nodes. The hybrid model ensures sufficient accuracy for the practical applications. A participle swarm optimization and evolutionary algorithm were used for identification of the parameters of the approximate nonlinear model and fuzzy decision tree. An important benefit of the proposed method is the obtained characteristics of the unknown parameters of the approximate nonlinear model described by the terminal nodes of the fuzzy decision tree. They present valuable and interpretable knowledge for the experts concerning the essence of the unknown phenomena.

Keywords

Nonlinear modeling Non-invasive identification Significant operating point Particle swarm optimization Evolutionary strategies Permanent magnet synchronous motors Takagi-Sugeno system Fuzzy decision trees 

References

  1. 1.
    Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)CrossRefGoogle Scholar
  2. 2.
    Bartczuk, Ł., Łapa, K., Koprinkova-Hristova, P.: A new method for generating of fuzzy rules for the nonlinear modelling based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 262–278. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_23CrossRefGoogle Scholar
  3. 3.
    Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res. 4(1), 43–56 (2014)CrossRefGoogle Scholar
  4. 4.
    Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)Google Scholar
  5. 5.
    Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)CrossRefGoogle Scholar
  6. 6.
    Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_25CrossRefGoogle Scholar
  7. 7.
    Dziwiński, P., Bartczuk, Ł., Tingwen, H.: A method for non-linear modelling based on the capabilities of PSO and GA algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 221–232. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59060-8_21CrossRefGoogle Scholar
  8. 8.
    El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)CrossRefGoogle Scholar
  9. 9.
    Khan, N.A., Shaikh, A.: A smart amalgamation of spectral neural algorithm for nonlinear Lane-Emden equations with simulated annealing. J. Artif. Intelli. Soft Comput. Res. 7(3), 215–224 (2017)CrossRefGoogle Scholar
  10. 10.
    Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with boosting. In: Proceedings of the 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, pp. 1274–1277 (2006)Google Scholar
  11. 11.
    Łapa, K., Cpałka, K.: On the application of a hybrid genetic-firework algorithm for controllers structure and parameters selection. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I. AISC, vol. 429, pp. 111–123. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28555-9_10CrossRefGoogle Scholar
  12. 12.
    Łapa, K., Cpałka, K., Galushkin, A.I.: A new interpretability criteria for neuro-fuzzy systems for nonlinear classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 448–468. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_41CrossRefGoogle Scholar
  13. 13.
    Łapa, K., Szczypta, J., Saito, T.: Aspects of evolutionary construction of new flexible PID-fuzzy controller. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 450–464. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39378-0_39CrossRefGoogle Scholar
  14. 14.
    Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 440–454. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_38CrossRefGoogle Scholar
  15. 15.
    Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)CrossRefGoogle Scholar
  16. 16.
    Ludwig, S.A.: Repulsive self-adaptive acceleration particle swarm optimization approach. J. Artif. Intell. Soft Comput. Res. 4(3), 189–204 (2014)CrossRefGoogle Scholar
  17. 17.
    Mendonca, L.F.: Decision tree search methods in fuzzy modeling and classification. Int. J. Approx. Reason. 44, 106–123 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Arain, M.A., Hultmann Ayala, H.V., Ansari, M.A.: Nonlinear system identification using neural network. In: Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A. (eds.) IMTIC 2012. CCIS, vol. 281, pp. 122–131. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28962-0_13CrossRefGoogle Scholar
  19. 19.
    Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intelli. Soft Comput. Res. 7(1), 33–46 (2017)CrossRefGoogle Scholar
  20. 20.
    Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7268, pp. 697–705. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29350-4_82CrossRefGoogle Scholar
  21. 21.
    Rotar, C., Iantovics, L.B.: Directed evolution - a new metaheuristc for optimization. J. Artif. Intelli. Soft Comput. Res. 7(3), 183–200 (2017)CrossRefGoogle Scholar
  22. 22.
    Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits Syst. 33(8), 812–818 (1986)CrossRefGoogle Scholar
  23. 23.
    Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Sig. Process. 182, 129–137 (1989)CrossRefGoogle Scholar
  24. 24.
    Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)CrossRefGoogle Scholar
  25. 25.
    Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)Google Scholar
  26. 26.
    Tambouratzis, T., Souliou, D., Chalikias, M., Gregoriades, A.: Maximising accuracy and efficiency of traffic accident prediction combining information mining with computational intelligence approaches and decision trees. J. Artif. Intell. Soft Comput. Res. 4(1), 31–42 (2014)CrossRefGoogle Scholar
  27. 27.
    Liu, X., Meng, J., Ge, J.: A method research on nonlinear system identification based on neural network. In: Zhu, R., Ma, Y. (eds.) Information Engineering and Applications. LNEE, vol. 154, pp. 1444–1449. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2386-6_193CrossRefGoogle Scholar
  28. 28.
    Yang, S., Sato, Y.: Swarm intelligence algorithm based on competitive predators with dynamic virtual teams. J. Artif. Intell. Soft Comput. Res. 7(2), 87–101 (2017)CrossRefGoogle Scholar
  29. 29.
    Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 137–146. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28567-2_12CrossRefGoogle Scholar
  30. 30.
    Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 161–174. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_16CrossRefGoogle Scholar
  31. 31.
    Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 216–230. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07176-3_20CrossRefGoogle Scholar
  32. 32.
    Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28567-2_13CrossRefGoogle Scholar
  33. 33.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 175–188. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_17CrossRefGoogle Scholar
  34. 34.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 218–231. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_20CrossRefGoogle Scholar
  35. 35.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: A method for genetic selection of the most characteristic descriptors of the dynamic signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 747–760. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_67CrossRefGoogle Scholar
  36. 36.
    Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 232–246. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_21CrossRefGoogle Scholar
  37. 37.
    Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computational IntelligenceCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Information Technology InstituteUniversity of Social SciencesŁodzPoland
  3. 3.Clark UniversityWorcesterUSA

Personalised recommendations