Advertisement

Architecture of Database Index for Content-Based Image Retrieval Systems

  • Rafał Grycuk
  • Patryk Najgebauer
  • Rafał SchererEmail author
  • Agnieszka Siwocha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

In this paper, we present a novel database index architecture for retrieving images. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as relational database management systems. We create a database index as a DLL library and deploy it on the MS SQL Server. The CEDD algorithm is used for image description. The index is composed of new user-defined types and a user-defined function. The presented index is tested on an image dataset and its effectiveness is proved. The proposed solution can be also be ported to other database management systems.

Keywords

Content-based image retrieval Image indexing 

References

  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and topsis for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)CrossRefGoogle Scholar
  3. 3.
    Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79547-6_30CrossRefGoogle Scholar
  4. 4.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)CrossRefGoogle Scholar
  5. 5.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)CrossRefGoogle Scholar
  6. 6.
    Gabryel, M.: The bag-of-words methods with pareto-fronts for similar image retrieval. In: Damaševičius, R., Mikašytė, V. (eds.) ICIST 2017. CCIS, vol. 756, pp. 374–384. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67642-5_31CrossRefGoogle Scholar
  7. 7.
    Gabryel, M., Damaševičius, R.: The image classification with different types of image features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 497–506. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_44CrossRefGoogle Scholar
  8. 8.
    Gabryel, M., Grycuk, R., Korytkowski, M., Holotyak, T.: Image indexing and retrieval using GSOM algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 706–714. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_63CrossRefGoogle Scholar
  9. 9.
    Grycuk, R.: Novel visual object descriptor using surf and clustering algorithms. J. Appl. Math. Comput. Mech. 15(3), 37–46 (2016)CrossRefGoogle Scholar
  10. 10.
    Grycuk, R., Gabryel, M., Korytkowski, M., Romanowski, J., Scherer, R.: Improved digital image segmentation based on stereo vision and mean shift algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 433–443. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55224-3_41CrossRefGoogle Scholar
  11. 11.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06932-6_36CrossRefGoogle Scholar
  12. 12.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 605–615. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07176-3_53CrossRefGoogle Scholar
  13. 13.
    Grycuk, R., Gabryel, M., Nowicki, R., Scherer, R.: Content-based image retrieval optimization by differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 86–93. IEEE (2016)Google Scholar
  14. 14.
    Grycuk, R., Gabryel, M., Scherer, M., Voloshynovskiy, S.: Image descriptor based on edge detection and crawler algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 647–659. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_57CrossRefGoogle Scholar
  15. 15.
    Grycuk, R., Gabryel, M., Scherer, R., Voloshynovskiy, S.: Multi-layer architecture for storing visual data based on WCF and microsoft SQL server database. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 715–726. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_64CrossRefGoogle Scholar
  16. 16.
    Grycuk, R., Knop, M.: Neural video compression based on SURF scene change detection algorithm. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 105–112. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-23814-2_13CrossRefGoogle Scholar
  17. 17.
    Grycuk, R., Scherer, M., Voloshynovskiy, S.: Local keypoint-based image detector with object detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 507–517. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_45CrossRefGoogle Scholar
  18. 18.
    Grycuk, R., Scherer, R., Gabryel, M.: New image descriptor from edge detector and blob extractor. J. Appl. Math. Comput. Mech. 14(4), 31–39 (2015)CrossRefGoogle Scholar
  19. 19.
    Huang, J., Kumar, S., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768, June 1997Google Scholar
  20. 20.
    Iakovidou, C., Bampis, L., Chatzichristofis, S.A., Boutalis, Y.S., Amanatiadis, A.: Color and edge directivity descriptor on GPGPU. In: 2015 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 301–308. IEEE (2015)Google Scholar
  21. 21.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Dolecki, M.: An application of chain code-based local descriptor and its extension to face recognition. Pattern Recogn. 65, 26–34 (2017)CrossRefGoogle Scholar
  22. 22.
    Kumar, P.P., Aparna, D.K., Rao, K.V.: Compact descriptors for accurate image indexing and retrieval: FCTH and CEDD. Int. J. Eng. Res. Technol. (IJERT) 1 (2012). ISSN 2278–0181Google Scholar
  23. 23.
    Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. Vis. Comput. 28(9), 931–942 (2012)CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)CrossRefGoogle Scholar
  25. 25.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Meskaldji, K., Boucherkha, S., Chikhi, S.: Color quantization and its impact on color histogram based image retrieval accuracy. In: First International Conference on Networked Digital Technologies, NDT 2009, pp. 515–517, July 2009Google Scholar
  27. 27.
    Riid, A., Preden, J.S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)CrossRefGoogle Scholar
  28. 28.
    Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y.: Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. J. Artif. Intell. Soft Comput. Res. 8(2), 103–110 (2018)CrossRefGoogle Scholar
  29. 29.
    Śmietański, J., Tadeusiewicz, R., Łuczyńska, E.: Texture analysis in perfusion images of prostate cancer-a case study. Int. J. Appl. Math. Comput. Sci. 20(1), 149–156 (2010)CrossRefGoogle Scholar
  30. 30.
    Valle, E., Cord, M.: Advanced techniques in CBIR: local descriptors, visual dictionaries and bags of features. In: 2009 Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI TUTORIALS), pp. 72–78. IEEE (2009)Google Scholar
  31. 31.
    Veltkamp, R.C., Tanase, M.: Content-based image retrieval systems: a survey, pp. 1–62. Utrecht University, Department of Computing Science (2002)Google Scholar
  32. 32.
    Wang, J.Z., Boujemaa, N., Del Bimbo, A., Geman, D., Hauptmann, A.G., Tesić, J.: Diversity in multimedia information retrieval research. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 5–12. ACM (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rafał Grycuk
    • 1
  • Patryk Najgebauer
    • 1
  • Rafał Scherer
    • 1
    Email author
  • Agnieszka Siwocha
    • 2
    • 3
  1. 1.Computer Vision and Data Mining Lab, Institute of Computational IntelligenceCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Information Technology InstituteUniversity of Social SciencesLodzPoland
  3. 3.Clark UniversityWorcesterUSA

Personalised recommendations