Complexity of Rule Sets Induced by Characteristic Sets and Generalized Maximal Consistent Blocks

  • Patrick G. Clark
  • Cheng Gao
  • Jerzy W. Grzymala-BusseEmail author
  • Teresa Mroczek
  • Rafal Niemiec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


We study mining incomplete data sets with two interpretations of missing attribute values, lost values and “do not care” conditions. For data mining we use characteristic sets and generalized maximal consistent blocks. Additionally, we use three types of probabilistic approximations, lower, middle and upper, so altogether we apply six approaches to data mining. Since it was shown that an error rate, associated with such data mining is not universally smaller for any approach, we decided to compare complexity of induced rule sets. Therefore, our objective is to compare six approaches to mining incomplete data sets in terms of complexity of induced rule sets. We conclude that there are statistically significant differences between these approaches.


Incomplete data Lost values “do not care” conditions Characteristic sets Maximal consistent blocks MLEM2 rule induction algorithm Probabilistic approximations 


  1. 1.
    Clark, P.G., Gao, C., Grzymala-Busse, J.W., Mroczek, T.: Characteristic sets and generalized maximal consistent blocks in mining incomplete data. In: Polkowski, L., Yao, Y., Artiemjew, P., Ciucci, D., Liu, D., Ślęzak, D., Zielosko, B. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10313, pp. 477–486. Springer, Cham (2017). Scholar
  2. 2.
    Clark, P.G., Grzymala-Busse, J.W.: Experiments on probabilistic approximations. In: Proceedings of the 2011 IEEE International Conference on Granular Computing, pp. 144–149 (2011)Google Scholar
  3. 3.
    Clark, P.G., Grzymala-Busse, J.W.: Experiments using three probabilistic approximations for rule induction from incomplete data sets. In: Proceeedings of the MCCSIS 2012, IADIS European Conference on Data Mining ECDM 2012, pp. 72–78 (2012)Google Scholar
  4. 4.
    Grzymala-Busse, J.W.: LERS–a system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)CrossRefGoogle Scholar
  5. 5.
    Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundam. Inform. 31, 27–39 (1997)zbMATHGoogle Scholar
  6. 6.
    Grzymala-Busse, J.W.: MLEM2: a new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 243–250 (2002)Google Scholar
  7. 7.
    Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Notes of the Workshop on Foundations and New Directions of Data Mining, in Conjunction with the Third International Conference on Data Mining, pp. 56–63 (2003)Google Scholar
  8. 8.
    Grzymała-Busse, J.W.: Generalized parameterized approximations. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 136–145. Springer, Heidelberg (2011). Scholar
  9. 9.
    Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining: Opportunities and Challenges, pp. 142–173. Idea Group Publishing, Hershey (2003)CrossRefGoogle Scholar
  10. 10.
    Leung, Y., Li, D.: Maximal consistent block technique for rule acquisition in incomplete information systems. Inf. Sci. 153, 85–106 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Leung, Y., Wu, W., Zhang, W.: Knowledge acquisition in incomplete information systems: a rough set approach. Eur. J. Oper. Res. 168, 164–180 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177, 28–40 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Int. J. Man Mach. Stud. 29, 81–95 (1988)CrossRefGoogle Scholar
  14. 14.
    Ślȩzak, D., Ziarko, W.: The investigation of the bayesian rough set model. Int. J. Approx. Reason. 40, 81–91 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wong, S.K.M., Ziarko, W.: INFER–an adaptive decision support system based on the probabilistic approximate classification. In: Proceedings of the 6-th International Workshop on Expert Systems and their Applications, pp. 713–726 (1986)Google Scholar
  16. 16.
    Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)CrossRefGoogle Scholar
  17. 17.
    Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)CrossRefGoogle Scholar
  18. 18.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ziarko, W.: Probabilistic approach to rough sets. Int. J. Approx. Reason. 49, 272–284 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patrick G. Clark
    • 1
  • Cheng Gao
    • 1
  • Jerzy W. Grzymala-Busse
    • 1
    • 2
    Email author
  • Teresa Mroczek
    • 2
  • Rafal Niemiec
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of KansasLawrenceUSA
  2. 2.Department of Expert Systems and Artificial IntelligenceUniversity of Information Technology and ManagementRzeszowPoland

Personalised recommendations