Advertisement

Uncertain Decision Tree Classifier for Mobile Context-Aware Computing

  • Szymon BobekEmail author
  • Piotr Misiak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

Knowledge discovery from uncertain data is one of the major challenges in building modern artificial intelligence applications. One of the greatest achievements in this area was made with a usage of machine learning algorithms and probabilistic models. However, most of these methods do not work well in systems which require intelligibility, efficiency and which operate on data are not only uncertain but also infinite. This is the most common case in mobile contex-aware computing. In such systems data are delivered in streaming manner, requiring from the learning algorithms to adapt their models iteratively to changing environment. Furthermore, models should be understandable for the user allowing their instant reconfiguration. We argue that all of these requirements can be met with a usage of incremental decision tree learning algorithm with modified split criterion. Therefore, we present a simple and efficient method for building decision trees from infinite training sets with uncertain instances and class labels.

Keywords

Decision trees Uncertainty Machine learning 

References

  1. 1.
    Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)CrossRefGoogle Scholar
  2. 2.
    Bobek, S.: Methods for modeling self-adaptive mobile context-aware sytems. Ph.D. thesis, AGH University of Science and Technology, April 2016. Supervisor: G.J. NalepaGoogle Scholar
  3. 3.
    Bobek, S., Nalepa, G.J.: Uncertain context data management in dynamic mobile environments. Future Gener. Comput. Syst. 66(Jan), 110–124 (2017).  https://doi.org/10.1016/j.future.2016.06.007CrossRefGoogle Scholar
  4. 4.
    Bobek, S., Nalepa, G.J.: Uncertainty handling in rule-based mobile context-aware systems. Pervasive Mob. Comput. 39(Aug), 159–179 (2017).  https://doi.org/10.1016/j.pmcj.2016.09.004CrossRefGoogle Scholar
  5. 5.
    Bobek, S., Nalepa, G.J., Ślażyński, M.: Challenges for migration of rule-based reasoning engine to a mobile platform. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2014. CCIS, vol. 429, pp. 43–57. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07569-3_4CrossRefGoogle Scholar
  6. 6.
    Bobek, S., Porzycki, K., Nalepa, G.J.: Learning sensors usage patterns in mobile context-aware systems. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems - FedCSIS 2013, Krakow, Poland, 8–11 September 2013, pp. 993–998. IEEE, September 2013Google Scholar
  7. 7.
    Bobek, S., Ślażyński, M., Nalepa, G.J.: Capturing dynamics of mobile context-aware systems with rules and statistical analysis of historical data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 578–590. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_51CrossRefGoogle Scholar
  8. 8.
    Chau, M., Cheng, R., Kao, B., Ng, J.: Uncertain data mining: an example in clustering location data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 199–204. Springer, Heidelberg (2006).  https://doi.org/10.1007/11731139_24CrossRefGoogle Scholar
  9. 9.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 71–80. ACM, New York (2000).  https://doi.org/10.1145/347090.347107
  10. 10.
    Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, New York (2012)CrossRefGoogle Scholar
  11. 11.
    Goyal, N., Jain, S.K.: A comparative study of different frequent pattern mining algorithm for uncertain data: a survey. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 183–187, April 2016Google Scholar
  12. 12.
    Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106. ACM, New York (2001).  https://doi.org/10.1145/502512.502529
  13. 13.
    Liang, C., Zhang, Y., Song, Q.: Decision tree for dynamic and uncertain data streams. In: Sugiyama, M., Yang, Q. (eds.) Proceedings of 2nd Asian Conference on Machine Learning. Proceedings of Machine Learning Research, 08–10 November 2010, vol. 13, pp. 209–224. PMLR, Tokyo (2010). http://proceedings.mlr.press/v13/liang10a.html
  14. 14.
    Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 598–605. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13232-2_73CrossRefGoogle Scholar
  15. 15.
    Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11(1), 171–193 (2014)CrossRefGoogle Scholar
  16. 16.
    Nalepa, G.J., Kutt, K., Bobek, S.: Mobile platform for affective context-aware systems. Future Gener. Comput. Syst. (2018).  https://doi.org/10.1016/j.future.2018.02.033CrossRefGoogle Scholar
  17. 17.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  18. 18.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  19. 19.
    Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of context-enabled applications. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1999, pp. 434–441. ACM, New York (1999)Google Scholar
  20. 20.
    Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2002, pp. 253–260. ACM, New York (2002)Google Scholar
  21. 21.
    Tsang, S., Kao, B., Yip, K.Y., Ho, W.S., Lee, S.D.: Decision trees for uncertain data. IEEE Trans. Knowl. Data Eng. 23(1), 64–78 (2011)CrossRefGoogle Scholar
  22. 22.
    Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995).  https://doi.org/10.1016/0165-0114(94)00229-ZMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations