Advertisement

Stability of Features Describing the Dynamic Signature Biometric Attribute

  • Marcin ZalasińskiEmail author
  • Krzysztof Cpałka
  • Konrad Grzanek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

Behavioral biometric attributes tend to change over time. Due to this, analysis of their changes is an important issue in the context of identity verification. In this paper, we present an evaluation of stability of features describing the dynamic signature biometric attribute. The dynamic signature is represented by nonlinear waveforms describing dynamics of the signing process. Our analysis takes into account a set of features extracted using a partitioning of the signature in comparison to so-called global features of the signature. It shows which features change more and how it is associated with identification efficiency. Our simulations were performed using ATVS-SLT DB dynamic signature database.

Keywords

Biometrics Dynamic signature Evaluation of signature stability 

References

  1. 1.
    Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: New method for generation type-2 fuzzy partition for FDT. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 275–280. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13208-7_35CrossRefGoogle Scholar
  2. 2.
    Bartczuk, Ł., Łapa, K., Koprinkova-Hristova, P.: A new method for generating of fuzzy rules for the nonlinear modelling based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 262–278. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_23CrossRefGoogle Scholar
  3. 3.
    Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and TOPSIS for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)CrossRefGoogle Scholar
  5. 5.
    Batista, L., Granger, E., Sabourin, R.: Dynamic selection of generative discriminative ensembles for off-line signature verification. Pattern Recogn. 45, 1326–1340 (2012)CrossRefGoogle Scholar
  6. 6.
    Bobulski, J.: 2DHMM-based face recognition method. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 11–18. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-23814-2_2CrossRefGoogle Scholar
  7. 7.
    Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)CrossRefGoogle Scholar
  8. 8.
    Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)CrossRefGoogle Scholar
  9. 9.
    Connor, P., Ross, A.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)CrossRefGoogle Scholar
  10. 10.
    Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)Google Scholar
  11. 11.
    Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)CrossRefGoogle Scholar
  12. 12.
    Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)CrossRefGoogle Scholar
  13. 13.
    Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_25CrossRefGoogle Scholar
  14. 14.
    Faundez-Zanuy, M.: On-line signature recognition based on VQ-DTW. Pattern Recogn. 40, 981–992 (2007)CrossRefGoogle Scholar
  15. 15.
    Galbally, J., Martinez-Diaz, M., Fierez, J.: Aging in biometrics: an experimental analysis on on-line signature. PLoS One 8(7), e69897 (2013)CrossRefGoogle Scholar
  16. 16.
    Grycuk, R., Gabryel, M., Scherer, R., Voloshynovskiy, S.: Multi-layer architecture for storing visual data based on WCF and microsoft SQL server database. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 715–726. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_64CrossRefGoogle Scholar
  17. 17.
    Ibrahim, M.T., Khan, M.A., Alimgeer, K.S., Khan, M.K., Taj, I.A., Guan, L.: Velocity and pressure-based partitions of horizontal and vertical trajectories for on-line signature verification. Pattern Recogn. 43, 2817–2832 (2010)CrossRefGoogle Scholar
  18. 18.
    Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44, 2231–2240 (2011)CrossRefGoogle Scholar
  19. 19.
    Ke, Y., Hagiwara, M.: An English neural network that learns texts, finds hidden knowledge, and answers questions. J. Artif. Intell. Soft Comput. Res. 7(4), 229–242 (2017)CrossRefGoogle Scholar
  20. 20.
    Khan, N.A., Shaikh, A.: A smart amalgamation of spectral neural algorithm for nonlinear Lane-Emden equations with simulated annealing. J. Artif. Intell. Soft Comput. Res. 7(3), 215–224 (2017)CrossRefGoogle Scholar
  21. 21.
    Kumar, R., Sharma, J.D., Chanda, B.: Writer-independent off-line signature verification using surroundedness feature. Pattern Recogn. Lett. 33, 301–308 (2012)CrossRefGoogle Scholar
  22. 22.
    Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass implementation of a hopfield neural structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 89–96. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_9CrossRefGoogle Scholar
  23. 23.
    Łapa, K., Cpałka, K.: On the application of a hybrid genetic-firework algorithm for controllers structure and parameters selection. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) ISAT 2015. AISC, vol. 429, pp. 111–123. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28555-9_10CrossRefGoogle Scholar
  24. 24.
    Łapa, K., Cpałka, K., Galushkin, A.I.: A new interpretability criteria for neuro-fuzzy systems for nonlinear classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 448–468. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_41CrossRefGoogle Scholar
  25. 25.
    Łapa, K., Szczypta, J., Saito, T.: Aspects of evolutionary construction of new flexible PID-fuzzy controller. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 450–464. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39378-0_39CrossRefGoogle Scholar
  26. 26.
    Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 440–454. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_38CrossRefGoogle Scholar
  27. 27.
    Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)CrossRefGoogle Scholar
  28. 28.
    Maiorana, E.: Biometric cryptosystem using function based on-line signature recognition. Expert Syst. Appl. 37, 3454–3461 (2010)CrossRefGoogle Scholar
  29. 29.
    Manjunatha, K.S., Manjunath, S., Guru, D.S., Somashekara, M.T.: Online signature verification based on writer dependent features and classifiers. Pattern Recogn. Lett. 80, 129–136 (2016)CrossRefGoogle Scholar
  30. 30.
    Minemoto, T., Isokawa, T., Nishimura, H., Matsui, N.: Pseudo-orthogonalization of memory patterns for complex-valued and quaternionic associative memories. J. Artif. Intell. Soft Comput. Res. 7(4), 257–264 (2017)CrossRefGoogle Scholar
  31. 31.
    Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Intelligent Technologies-Theory and Applications, pp. 124–129 (2002)Google Scholar
  32. 32.
    Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)CrossRefGoogle Scholar
  33. 33.
    Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)CrossRefGoogle Scholar
  34. 34.
    Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)CrossRefGoogle Scholar
  35. 35.
    Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)Google Scholar
  36. 36.
    Scherer, R.: Multiple Fuzzy Classification Systems. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30604-4CrossRefzbMATHGoogle Scholar
  37. 37.
    Scherer, R., Rutkowski, L.: A fuzzy relational system with linguistic antecedent certainty factor. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. AINSC, vol. 19, pp. 563–569. Physica, Heidelberg (2003).  https://doi.org/10.1007/978-3-7908-1902-1_86CrossRefGoogle Scholar
  38. 38.
    Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Halgamuge, S.K., Wang, L. (eds.) Computational Intelligence for Modelling and Prediction. SCI, vol. 2, pp. 35–47. Springer, Heidelberg (2005).  https://doi.org/10.1007/10966518_3CrossRefGoogle Scholar
  39. 39.
    Tezuka, T., Claramunt, C.: Kernel analysis for estimating the connectivity of a network with event sequences. J. Artif. Intell. Soft Comput. Res. 7(1), 17–31 (2017)CrossRefGoogle Scholar
  40. 40.
    Yeung, D.-Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: first international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25948-0_3CrossRefGoogle Scholar
  41. 41.
    Yilmaz, M.B., Yanikoglu, B.: Score level fusion of classifiers in off-line signature verification. Inf. Fusion 32(Part B), 109–119 (2016)CrossRefGoogle Scholar
  42. 42.
    Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 175–188. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_17CrossRefGoogle Scholar
  43. 43.
    Zalasiński, M., Cpałka, K.: A new method for signature verification based on selection of the most important partitions of the dynamic signature. Neurocomputing 289, 13–22 (2018)CrossRefGoogle Scholar
  44. 44.
    Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 232–246. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_21CrossRefGoogle Scholar
  45. 45.
    Zalasiński, M., Cpałka, K., Er, M.J.: Stability evaluation of the dynamic signature partitions over time. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 733–746. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_66CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcin Zalasiński
    • 1
    Email author
  • Krzysztof Cpałka
    • 1
  • Konrad Grzanek
    • 2
    • 3
  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland
  2. 2.Information Technology InstituteUniversity of Social SciencesŁodźPoland
  3. 3.Clark UniversityWorcesterUSA

Personalised recommendations