Advertisement

Towards the Development of Sensor Platform for Processing Physiological Data from Wearable Sensors

  • Krzysztof Kutt
  • Wojciech Binek
  • Piotr Misiak
  • Grzegorz J. Nalepa
  • Szymon BobekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

The paper outlines a mobile sensor platform aimed at processing physiological data from wearable sensors. We discuss the requirements related to the use of low-cost portable devices in this scenario. Experimental analysis of four such devices, namely Microsoft Band 2, Empatica E4, eHealth Sensor Platform and BITalino (r)evolution is provided. Critical comparison of quality of HR and GSR signals leads to the conclusion that future works should focus on the BITalino, possibly combined with the MS Band 2 in some cases. This work is a foundation for possible applications in affective computing and telemedicine.

References

  1. 1.
    Alexander, D.M., Trengove, C., Johnston, P., Cooper, T., August, J.P., Gordon, E.: Separating individual skin conductance responses in a short interstimulus-interval paradigm. J. Neurosci. Methods 146(1), 116–123 (2005)CrossRefGoogle Scholar
  2. 2.
    Arnold, M.B.: Emotion and Personality. Columbia University Press, New York (1960)Google Scholar
  3. 3.
    Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47(4), 647–658 (2010)Google Scholar
  4. 4.
    Cacioppo, J.T., Berntson, G.G., Larsen, J.T., Poehlmann, K.M., Ito, T.A.: The psychophysiology of emotion. In: Handbook of Emotions, pp. 173–191. Guildford Press, New York (2000)Google Scholar
  5. 5.
    Düking, P., Hotho, A., Holmberg, H.C., Fuss, F.K., Sperlich, B.: Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Front. Physiol. 7, 71 (2016)CrossRefGoogle Scholar
  6. 6.
    Garbarino, M., Lai, M., Bender, D., Picard, R., Tognetti, S.: Empatica E3 - a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 39–42 (2014)Google Scholar
  7. 7.
    Grundlehner, B., Brown, L., Penders, J., Gyselinckx, B.: The design and analysis of a real-time, continuous arousal monitor. In: Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 156–161, June 2009Google Scholar
  8. 8.
    Hirsch, J.A., Bishop, B.: Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241(4), H620–H629 (1981). https://pdfs.semanticscholar.org/48fa/f00ce055ae1bfc5535dc446037b1d9aacf89.pdf, http://www.ncbi.nlm.nih.gov/pubmed/7315987Google Scholar
  9. 9.
    IMotions Biometric Research Platform: GSR Pocket Guide. IMotions Biometric Research Platform (2016)Google Scholar
  10. 10.
    Kutt, K., Nalepa, G.J., Giżycka, B., Jemioło, P., Adamczyk, M.: Bandreader - a mobile application for data acquisition from wearable devices in affective computing experiments. In: ICAISC 2018 (2018, submitted)Google Scholar
  11. 11.
    Lazarus, R.S.: Psychological Stress and the Coping Process. McGraw-Hill, New York (1966)Google Scholar
  12. 12.
    Marchewka, A., Żurawski, Ł., Jednoróg, K., Grabowska, A.: The nencki affective picture system (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 46(2), 596–610 (2014)CrossRefGoogle Scholar
  13. 13.
    Nalepa, G.J., Gizycka, B., Kutt, K., Argasinski, J.K.: Affective design patterns in computer games. Scrollrunner case study. In: Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, pp. 345–352 (2017).  https://doi.org/10.15439/2017F192
  14. 14.
    Nalepa, G.J., Kutt, K., Bobek, S., Lepicki, M.Z.: AfCAI systems: affective computing with context awareness for ambient intelligence. Research proposal. In: Ezquerro, M.T.H., Nalepa, G.J., Mendez, J.T.P. (eds.) Proceedings of the Workshop on Affective Computing and Context Awareness in Ambient Intelligence (AfCAI 2016). CEUR Workshop Proceedings, vol. 1794 (2016). http://ceur-ws.org/xxx-1794/
  15. 15.
    Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R.A.: Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In: Proceedings of the 24th Conference on Australian Computer-Human Interaction, OzCHI 2012, pp. 420–423 (2012)Google Scholar
  16. 16.
    Ohme, R., Reykowska, D., Wiener, D., Choromanska, A.: Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J. Neurosci. Psychol. Econ. 2(1), 21–31 (2009)CrossRefGoogle Scholar
  17. 17.
    Orthony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  18. 18.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  19. 19.
    Schmidt, S., Walach, H.: Electrodermal activity (EDA) - state-of-the-art measurement and techniques for parapsychological purposes. J. Parapsychol. 64, 139–163 (2000)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Krzysztof Kutt
    • 1
  • Wojciech Binek
    • 1
  • Piotr Misiak
    • 1
  • Grzegorz J. Nalepa
    • 1
  • Szymon Bobek
    • 1
    Email author
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations