On Some Aspects of an Aggregation Mechanism in Face Recognition Problems

  • Paweł KarczmarekEmail author
  • Adam Kiersztyn
  • Witold Pedrycz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


In the paper, we investigate the problem of an aggregation of classifiers based on numerical and linguistic values of facial features. In the literature, there are many reports of the studies discussing the aggregation or information fusion, however in the situation when the specific classification methods utilize numeric, not linguistic values. Here, we examine the well-known methods (Eigenfaces, Fisherfaces, LBP, MB-LBP, CCBLD) supported by the linguistic values of the measurable facial segments. The detailed results of experiments on the MUCT and PUT facial databases show which of the common aggregation functions and methods have a significant potential to improve the classification process.


Classifiers aggregation Clustering FCM Face recognition Eigenfaces Fisherfaces Local descriptors 



The authors are supported by National Science Centre, Poland (grant no. 2014/13/D/ST6/03244). Support from the Canada Research Chair (CRC) program and Natural Sciences and Engineering Research Council is gratefully acknowledged (W. Pedrycz).


  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). Scholar
  2. 2.
    Al-Hmouz, R., Pedrycz, W., Daqrouq, K., Morfeq, A.: Development of multimodal biometric systems with three-way and fuzzy set-based decision mechanisms. Int. J. Fuzzy Syst. 20, 128–140 (2018). Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007). Scholar
  5. 5.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)CrossRefGoogle Scholar
  6. 6.
    Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1042–1052 (1993)CrossRefGoogle Scholar
  7. 7.
    Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators. New Trends and Applications. Physica-Verlag, Heidelberg (2014). Scholar
  8. 8.
    Chan, C.-H., Kittler, J., Messer, K.: Multi-scale local binary pattern histograms for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 809–818. Springer, Heidelberg (2007). Scholar
  9. 9.
    Dolecki, M., Karczmarek, P., Kiersztyn, A., Pedrycz, W.: Utility functions as aggregation functions in face recognition. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, pp. 1–6 (2016)Google Scholar
  10. 10.
    Fukushima, S., Ralescu, A.L.: Improved retrieval in a fuzzy database from adjusted user input. J. Intell. Inf. Syst. 5, 249–274 (1995)CrossRefGoogle Scholar
  11. 11.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  12. 12.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Cham (2014). Scholar
  13. 13.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 605–615. Springer, Cham (2014). Scholar
  14. 14.
    Grycuk, R., Gabryel, M., Nowicki, R., Scherer, R.: Content-based image retrieval optimization by differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 86–93 (2016)Google Scholar
  15. 15.
    Haddadnia, J., Ahmadi, M.: N-feature neural network human face recognition. Image Vis. Comput. 22, 1071–1082 (2004)CrossRefGoogle Scholar
  16. 16.
    Hu, X., Pedrycz, W., Wang, X.: Comparative analysis of logic operators: a perspective of statistical testing and granular computing. Int. J. Approx. Reason. 66, 73–90 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jarillo, G., Pedrycz, W., Reformat, M.: Aggregation of classifiers based on image transformations in biometric face recognition. Mach. Vis. Appl. 19, 125–140 (2008)CrossRefGoogle Scholar
  18. 18.
    Kacprzyk, J., Pedrycz, W.: Springer Handbook of Computational Intelligence. Springer, Heidelberg (2015). Scholar
  19. 19.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W.: An evaluation of fuzzy measure for face recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 668–676. Springer, Cham (2017). Scholar
  20. 20.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W.: On developing Sugeno fuzzy measure densities in problems of face recognition. Int. J. Mach. Intell. Sens. Signal Process. 2, 80–96 (2017)Google Scholar
  21. 21.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W.: Generalized Choquet integral for face recognition. Int. J. Fuzzy Syst. 20, 1047–1055 (2018). Scholar
  22. 22.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Rutka, P.: A study in facial features saliency in face recognition: an analytic hierarchy process approach. Soft. Comput. 21, 7503–7517 (2017)CrossRefGoogle Scholar
  23. 23.
    Karczmarek, P., Kiersztyn, A., Rutka, P., Pedrycz, W.: Linguistic descriptors in face recognition: a literature survey and the perspectives of future development. In: SPA 2015 Signal Processing, Algorithms, Architectures, Arrangements, and Applications, Conference Proceedings, pp. 98–103 (2015)Google Scholar
  24. 24.
    Karczmarek, P., Pedrycz, W., Kiersztyn, A., Dolecki, M.: An application of chain code-based local descriptor and its extension to face recognition. Pattern Recognit. 65, 26–34 (2017)CrossRefGoogle Scholar
  25. 25.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Rutka, P.: Chain code-based local descriptor for face recognition. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 307–316. Springer, Cham (2016). Scholar
  26. 26.
    Karczmarek, P., Pedrycz, W., Reformat, M., Akhoundi, E.: A study in facial regions saliency: a fuzzy measure approach. Soft. Comput. 18, 379–391 (2014)CrossRefGoogle Scholar
  27. 27.
    Kasiński, A., Florek, A., Schmidt, A.: The PUT face database. Image Process. Commun. 13, 59–64 (2008)Google Scholar
  28. 28.
    Kumar, N., Berg, A.C., Belhumeur P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: Proceedings of IEEE 12th International Conference on Computer Vision, pp. 365–372 (2009)Google Scholar
  29. 29.
    Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Describable visual attributes for face verification and image search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1962–1977 (2011)CrossRefGoogle Scholar
  30. 30.
    Kurach, D., Rutkowska, D., Rakus-Andersson, E.: Face classification based on linguistic description of facial features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 155–166. Springer, Cham (2014). Scholar
  31. 31.
    Kwak, K.-C., Pedrycz, W.: Face recognition using fuzzy integral and wavelet decomposition method. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 1666–1675 (2004)CrossRefGoogle Scholar
  32. 32.
    Kwak, K.-C., Pedrycz, W.: Face recognition: a study in information fusion using fuzzy integral. Pattern Recognit. Lett. 26, 719–733 (2005)CrossRefGoogle Scholar
  33. 33.
    Li, L., Alrjebi, M., Liu, W.: Face recognition against pose variations using multi-resolution multiple colour fusion. Int. J. Mach. Intell. Sens. Signal Process. 1, 304–320 (2016)Google Scholar
  34. 34.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007). Scholar
  35. 35.
    Liu, Z., Liu, C.: Fusion of color, local spatial and global frequency information for face recognition. Pattern Recognit. 43, 2882–2890 (2010)CrossRefGoogle Scholar
  36. 36.
    Martínez, G.E., Melin, P., Mendoza, O.D., Castillo, O.: Face recognition with choquet integral in modular neural networks. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. SCI, vol. 547, pp. 437–449. Springer, Cham (2014). Scholar
  37. 37.
    Martínez, G.E., Melin, P., Mendoza, O.D., Castillo, O.: Face recognition with a Sobel edge detector and the Choquet integral as integration method in a modular neural networks. In: Melin, P., et al. (eds.) Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, pp. 59–70. Springer, Part I (2015)CrossRefGoogle Scholar
  38. 38.
    Melin, P., Felix, C., Castillo, O.: Face recognition using modular neural networks and the fuzzy Sugeno integral for response integration. Int. J. Intell. Syst. 20, 275–291 (2005)CrossRefGoogle Scholar
  39. 39.
    Milborrow, S., Morkel, J., Nicolls, F.: The MUCT landmarked face database. In: Pattern Recognition Association of South Africa (2010)Google Scholar
  40. 40.
    Mirhosseini, A.R., Yan, H., Lam, K.-M., Pham, T.: Human face image recognition: an evidence aggregation approach. Comput. Vis. Image Underst. 71, 213–230 (1998)CrossRefGoogle Scholar
  41. 41.
    Moreira, J.L., Braun, A., Musse, S.R.: Eyes and eyebrows detection for performance driven animation. In: 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images, pp. 17–24 (2010)Google Scholar
  42. 42.
    Nakayama, M., Miyajima, K., Iwamoto, H., Norita, T.: Interactive human face retrieval system based on linguistic expression. In: Proceedings of 2nd International Conference on Fuzzy Logic and Neural Networks, IIZUKA 1992, vol. 2, pp. 683–686 (1992)Google Scholar
  43. 43.
    Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press, Boca Raton (2013)CrossRefGoogle Scholar
  44. 44.
    Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proceedings of 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 84–91 (1994)Google Scholar
  45. 45.
    Rahman, A., Sufyan Beg, M.M.: Face sketch recognition using sketching with words. Int. J. Mach. Learn. Cyber. 6, 597–605 (2015)CrossRefGoogle Scholar
  46. 46.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paweł Karczmarek
    • 1
    Email author
  • Adam Kiersztyn
    • 1
  • Witold Pedrycz
    • 2
    • 3
    • 4
  1. 1.Institute of Mathematics and Computer ScienceThe John Paul II Catholic University of LublinLublinPoland
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Department of Electrical and Computer Engineering, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations