An Application of Graphic Tools and Analytic Hierarchy Process to the Description of Biometric Features

  • Paweł KarczmarekEmail author
  • Adam Kiersztyn
  • Witold Pedrycz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)


AHP is a well-known method supporting decision-making based on a pairwise comparison process. Previous results of our research show that this tool can be effectively used to describe biometric features, in particular facial parts. In this paper, we present an original and innovative development of this approach augmented by a graphical interface that allows the user to get rid of restrictions in the form of certain numerical (linguistic) values, which were adapted beforehand, answering questions about comparisons of individual features. The presented results of experiments show the efficiency and ease of use of AHP based on a graphical interface in a context of description of biometric features. An application a proper non-linear transformation which parameters can be found on a basis of Particle Swarm Optimization can significantly improve the consistency of expert’s evaluation.


Analytic Hierarchy Process (AHP) Decision-making theory Particle Swarm Optimization Facial features Biometric description 



The authors are supported by National Science Centre, Poland (grant no. 2014/13/D/ST6/03244). Support from the Canada Research Chair (CRC) program and Natural Sciences and Engineering Research Council is gratefully acknowledged (W. Pedrycz).


  1. 1.
    Alonso, J.A., Lamata, M.T.: Consistency in the analytic hierarchy process: a new approach. Int. J. Uncertain. Fuzz. 14, 445–459 (2006)CrossRefGoogle Scholar
  2. 2.
    Bertillon, A.: La photographie judiciaire: avec un appendice sur la classification et l’identification anthropométriques. Gauthier-Villars, Paris (1890)Google Scholar
  3. 3.
    Bertillon, A.: Identification anthropométrique: instructions signaltiques. Imprimerie administrative, Melun (1983)Google Scholar
  4. 4.
    Dolecki, M., Karczmarek, P., Kiersztyn, A., Pedrycz, W.: Face recognition by humans performed on basis of linguistic descriptors and neural networks. In: Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN 2016), pp. 5135–5140 (2016)Google Scholar
  5. 5.
    Frowd, C.D., Hancock, P.J.B., Carson, D.: EvoFIT: a holistic, evolutionary facial imaging technique for creating composites. ACM Trans. Appl. Percept. 1, 19–39 (2004)CrossRefGoogle Scholar
  6. 6.
    Fukushima, S., Ralescu, A.L.: Improved retrieval in a fuzzy database from adjusted user input. J. Intell. Inf. Syst. 5, 249–274 (1995)CrossRefGoogle Scholar
  7. 7.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Cham (2014). Scholar
  8. 8.
    Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 605–615. Springer, Cham (2014). Scholar
  9. 9.
    Grycuk, R., Gabryel, M., Nowicki, R., Scherer, R.: Content-based image retrieval optimization by differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 86–93 (2016)Google Scholar
  10. 10.
    Kacprzyk, J., Pedrycz, W.: Springer Handbook of Computational Intelligence. Springer, Heidelberg (2015). Scholar
  11. 11.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Dolecki, M.: Linguistic descriptors and analytic hierarchy process in face recognition realized by humans. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 584–596. Springer, Cham (2016). Scholar
  12. 12.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Rutka, P.: A study in facial features saliency in face recognition: an analytic hierarchy process approach. Soft. Comput. 21, 7503–7517 (2017)CrossRefGoogle Scholar
  13. 13.
    Karczmarek, P., Kiersztyn, A., Rutka, P., Pedrycz, W.: Linguistic descriptors in face recognition: a literature survey and the perspectives of future development. In: SPA 2015 Signal Processing, Algorithms, Architectures, Arrangements, and Applications, Conference Proceedings, pp. 98–103 (2015)Google Scholar
  14. 14.
    Karczmarek, P., Pedrycz, W., Kiersztyn, A.: Graphic interface to analytic hierarchy process and its optimization. IEEE Trans. Fuzzy Syst. (submitted)Google Scholar
  15. 15.
    Kasiński, A., Florek, A., Schmidt, A.: The PUT face database. Image Process. Commun. 13, 59–64 (2008)Google Scholar
  16. 16.
    Kennedy, J.F., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Academic Press, San Diego (2001)Google Scholar
  17. 17.
    Kiersztyn, A., Karczmarek, P., Dolecki, M., Pedrycz, W.: Linguistic descriptors and fuzzy sets in face recognition realized by humans. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2016), pp. 1120–1126 (2016)Google Scholar
  18. 18.
    Kiersztyn, A., Karczmarek, P., Rutka, P., Pedrycz, W.: Quantitative methods for linguistic descriptors in face recognition. In: Zapała, A. (ed.) Recent Developments in Mathematics and Informatics, Contemporary Mathematics and Computer Science, vol. 1, pp. 123–138. The John Paul II Catholic University of Lublin Press, Lublin (2016)Google Scholar
  19. 19.
    Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: Proceedings of IEEE 12th International Conference on Computer Vision, pp. 365–372 (2009)Google Scholar
  20. 20.
    Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Describable visual attributes for face verification and image search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1962–1977 (2011)CrossRefGoogle Scholar
  21. 21.
    Kurach, D., Rutkowska, D., Rakus-Andersson, E.: Face classification based on linguistic description of facial features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 155–166. Springer, Cham (2014). Scholar
  22. 22.
    van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 199–227 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Laughery, K.R., Fowler, R.H.: Sketch artists and Identi-kit, procedure for recalling faces. J. Appl. Psychol. 65, 307–316 (1980)CrossRefGoogle Scholar
  24. 24.
    Matthews, M.L.: Discrimination of Identikit constructions of faces: evidence for a dual processing strategy. Percept. Psychophys. 23, 153–161 (1978)CrossRefGoogle Scholar
  25. 25.
    Moreira, J.L., Braun A., Musse, S.R.: Eyes and eyebrows detection for performance driven animation. In: 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images, pp. 17–24 (2010)Google Scholar
  26. 26.
    Nakayama, M., Miyajima, K., Iwamoto, H., Norita, T.: Interactive human face retrieval system based on linguistic expression. In: Proceedings of 2nd International Conference on Fuzzy Logic and Neural Networks, IIZUKA 1992, vol. 2, pp. 683–686 (1992)Google Scholar
  27. 27.
    Nakayama, M., Norita, T., Ralescu, A.: A fuzzy logic based qualitative modeling of image data. In: Proceedings of lPMU 1992, pp. 615–618 (1992)Google Scholar
  28. 28.
    Norita, T.: Fuzzy theory in an image understanding retrieval system. In: Ralescu, A.L. (ed.) Applied Research in Fuzzy Technology. International Series in Intelligent Technologies, vol. 1, pp. 215–251. Springer Science+Business Media, New York (1994). Scholar
  29. 29.
    Rahman, A., Sufyan Beg, M.M.: Face sketch recognition using sketching with words. Int. J. Mach. Learn. Cyber. 6, 597–605 (2015)CrossRefGoogle Scholar
  30. 30.
    Saaty, T.L.: Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. Analytic Hierarchy Process Series, vol. 6. RWS Publications, Pittsburgh (2000)Google Scholar
  31. 31.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  32. 32.
    Saaty, T.L., Mariano, R.S.: Rationing energy to industries: priorities and input-output dependence. Energy Syst. Policy 3, 85–111 (1979)Google Scholar
  33. 33.
    Saaty, T.L., Vargas, L.G.: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Springer, New York (2012). Scholar
  34. 34.
    Sadr, J., Jarudi, I., Sinha, P.: The role of eyebrows in face recognition. Perception 32, 285–293 (2003)CrossRefGoogle Scholar
  35. 35.
    Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE CVPR, pp. 1891–1898 (2014)Google Scholar
  36. 36.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paweł Karczmarek
    • 1
    Email author
  • Adam Kiersztyn
    • 1
  • Witold Pedrycz
    • 2
    • 3
    • 4
  1. 1.Institute of Mathematics and Computer ScienceThe John Paul II Catholic University of LublinLublinPoland
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Department of Electrical and Computer Engineering, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Systems Research Institute, Polish Academy of SciencesWarsawPoland

Personalised recommendations