Advertisement

Analytical Realization of the EM Algorithm for Emission Positron Tomography

  • Robert CierniakEmail author
  • Piotr Dobosz
  • Piotr Pluta
  • Zbigniew Filutowicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

The presented paper describes an analytical iterative approach to reconstruction problem for positron emission tomography (PET). The reconstruction problem is formulated taking into consideration the statistical properties of signals obtained by PET scanner and the analytical methodology of image processing. Computer simulations have been performed which prove that the reconstruction algorithm described here, does indeed significantly outperform conventional analytical methods on the quality of the images obtained.

Keywords

Image reconstruction from projections Positron emission tomography Statistical iterative reconstruction algorithm 

Notes

Acknowledgments

This work was partly supported by The National Centre for Research and Development in Poland (Research Project POIR.01.01.01-00-0463/17).

References

  1. 1.
    Sauer, K., Bouman, C.: A local update strategy for iterative reconstruction from projections. IEEE Trans. Signal Process. 41(3), 534–548 (1993)zbMATHGoogle Scholar
  2. 2.
    Fessler, J.A.: Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans. Med. Imaging 13(2), 290–300 (1994)Google Scholar
  3. 3.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging MI–1(2), 113–122 (1982)Google Scholar
  4. 4.
    Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990)Google Scholar
  5. 5.
    Cierniak, R.: New neural network algorithm for image reconstruction from fan-beam projections. Neurocomputing 72, 3238–3244 (2009)Google Scholar
  6. 6.
    Cierniak, R.: A new approach to tomographic image reconstruction using a Hopfield-type neural network. Int. J. Artif. Intell. Med. 43(2), 113–125 (2008)MathSciNetGoogle Scholar
  7. 7.
    Cierniak, R.: A three-dimentional neural network based approach to the image reconstruction from projections problem. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 505–514. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13208-7_63Google Scholar
  8. 8.
    Cierniak, R.: A novel approach to image reconstruction from discrete projections using Hopfield-type neural network. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 890–898. Springer, Heidelberg (2006).  https://doi.org/10.1007/11785231_93Google Scholar
  9. 9.
    Cierniak, R.: A new approach to image reconstruction from projections problem using a recurrent neural network. Int. J. Appl. Math. Comput. Sci. 183(2), 147–157 (2008)MathSciNetGoogle Scholar
  10. 10.
    Cierniak, R.: A novel approach to image reconstruction problem from fan-beam projections using recurrent neural network. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 752–761. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69731-2_72Google Scholar
  11. 11.
    Cierniak, R.: Neural network algorithm for image reconstruction using the grid-friendly projections. Australas. Phys. Eng. Sci. Med. 34, 375–389 (2011)Google Scholar
  12. 12.
    Cierniak, R.: An analytical iterative statistical algorithm for image reconstruction from projections. Appl. Math. Comput. Sci. 24(1), 7–17 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chu, J.L., Krzyźak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)Google Scholar
  14. 14.
    Bas, E.: The training of multiplicative neuron model artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)Google Scholar
  15. 15.
    Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res. 4(1), 43–56 (2014)Google Scholar
  16. 16.
    Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)Google Scholar
  17. 17.
    El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)Google Scholar
  18. 18.
    Leon, M., Xiong, N.: Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters. J. Artif. Intell. Soft Comput. Res. 6(2), 103–118 (2016)Google Scholar
  19. 19.
    Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)zbMATHGoogle Scholar
  20. 20.
    Rutkowska, A.: Influence of membership function’s shape on portfolio optimization results. J. Artif. Intell. Soft Comput. Res. 6(1), 45–54 (2016)Google Scholar
  21. 21.
    Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)Google Scholar
  22. 22.
    Notomista, G., Botsch, M.: A machine learning approach for the segmentation of driving maneuvers and its application in autonomous parking. J. Artif. Intell. Soft Comput. Res. 7(4), 243–255 (2017)Google Scholar
  23. 23.
    Rotar, C., Iantovics, L.B.: Directed evolution - a new metaheuristc for optimization. J. Artif. Intell. Soft Comput. Res. 7(3), 183–200 (2017)Google Scholar
  24. 24.
    Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)Google Scholar
  25. 25.
    Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert Cierniak
    • 1
    Email author
  • Piotr Dobosz
    • 1
  • Piotr Pluta
    • 1
  • Zbigniew Filutowicz
    • 2
    • 3
  1. 1.Institute of Computational IntelligenceCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Information Technology InstituteUniversity of Social ScienceLodzPoland
  3. 3.Clark UniversityWorcesterUSA

Personalised recommendations