Advertisement

The Shape Language Application to Evaluation of the Vertebra Syndesmophytes Development Progress

  • Marzena BieleckaEmail author
  • Rafał Obuchowicz
  • Mariusz Korkosz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10842)

Abstract

In this paper, a measure for assessment the progress of pathological changes in spine bones is introduced. The definition of the measure is based on a syntactic description of geometric features of the bone contours. The proposed approach is applied for analysis of vertebra syndesmophytes in X-ray images of the spine. It turns out that the proposed measure assesses the progress of the disease effectively. The results obtained by the algorithm based on the introduced measure are consistent with the assessment done by an expert.

Keywords

Vertebrae radiographs Shape language Geometric features Syntactic description 

References

  1. 1.
    Aydin, S.Z., Kasapoglu Gunal, E., Kurum, E., Akar, S., Mungan, H.E., Alibaz-Oner, F., Lambert, R.G., Atagunduz, P., Marzo Ortega, H., McGonagle, D., Maksymowych, W.P.: Limited reliability of radiographic assessment of spinal progression in ankylosing spondylitis. Rheumatology 56, 2162–2169 (2017)CrossRefGoogle Scholar
  2. 2.
    Antani, S., Long, L.R., Thoma, G.R.: A biomedical information system for combined content-based retrieval of spine X-ray images and associated text information. In: Proceedings of the 3rd Indian Conference on Computer Vision, Graphics and Image Processing, pp. 242–247 (2002)Google Scholar
  3. 3.
    Antani, S., Lee, D.J., Long, L.R., Thoma, G.R.: Evaluation of shape similarity measurement methods for spine X-ray images. J. Vis. Commun. Image Represent. 15, 285–302 (2004)CrossRefGoogle Scholar
  4. 4.
    Benerjee, S., Bhunia, S., Schaefer, G.: Osteophyte detection for hand osteoarthritis identification in X-ray images using CNNs. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS pp. 6196–6199 (2011)Google Scholar
  5. 5.
    Bielecka, M., Bielecki, A., Korkosz, M., Skomorowski, M., Wojciechowski, W., Zieliński, B.: Application of shape description methodology to hand radiographs interpretation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 11–18. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15910-7_2CrossRefGoogle Scholar
  6. 6.
    Bielecka, M., Piórkowski, A.: Optimization of numerical calculations of geometric features of a curve describing preprocessed X-Ray images of bones as a starting point for syntactic analysis of finger bone contours. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 365–376. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46418-3_32CrossRefGoogle Scholar
  7. 7.
    Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 531–540. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39378-0_45CrossRefGoogle Scholar
  8. 8.
    Baraliakos, X., Listing, J., Rudwaleit, M., Haibel, H., Brandt, J., Sieper, J., et al.: Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann. Rheum. Dis. 66, 910–915 (2007)CrossRefGoogle Scholar
  9. 9.
    Creemers, M., Franssen, M.J., van’t Hof, M.A., Gribnau, F.W., van de Putte, L.B., van Riel, P.L.: Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005)CrossRefGoogle Scholar
  10. 10.
    El Maghraoui, A., Bensabbah, R., Bahiri, R., Bezza, A., Guedira, N., Hajjaj-Hassouni, N.: Cervical spine involvement in ankylosing spondylitis. Clin. Rheumatol. 22, 94–98 (2003)CrossRefGoogle Scholar
  11. 11.
    Howe, B., Gururajan, A., Sari-Sarraf, A., Long, L.R.: Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: Proceedings of the 6th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 182–186 (2004)Google Scholar
  12. 12.
    Heuft-Dorenbosch, L., Landewe, R., Weijers, R., Wanders, A., Houben, H., van der Linden, S., et al.: Combining information obtained from magnetic resonance imaging and conventional radiographs to detect sacroiliitis in patients with recent onset inflammatory back pain. Ann. Rheum. Dis. 65, 804–808 (2006)CrossRefGoogle Scholar
  13. 13.
    Lee, H.S., Kim, T.H., Yun, H.R., Park, Y.W., Jung, S.S., Bae, S.C., et al.: Radiologic changes of cervical spine in ankylosing spondylitis. Clin. Rheumatol. 20, 262–266 (2001)CrossRefGoogle Scholar
  14. 14.
    Long, L.R., Thoma, G.R.: Use of shape models to search digitized spine X-rays. In: Proceedings of the 13th IEEE Symposium on Computer-Based Medical Systems, pp. 255–260 (2000)Google Scholar
  15. 15.
    Mandl, P., Navarro-Compn, V., Terslev, L., Aegerter, P., et al.: EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 74, 1327–1339 (2015)CrossRefGoogle Scholar
  16. 16.
    Maas, F., Spoorenberg, A., Brouwer, E., van der Veer, E., Bootsma, H., Bos, R., Wink, F.R., Arends, S.: Radiographic damage and progression of the cervical spine in ankylosing spondylitis patients treated with TNF-a inhibitors: facet joints vs. vertebral bodies. Semin. Arthritis. Rheum. 46(5), 562–568 (2017)CrossRefGoogle Scholar
  17. 17.
    Nurzynska, K., Piórkowski, A., Bielecka, M., Obuchowicz, R., Taton, G., Sulicka, J., Korkosz, M.: Automatical syndesmophyte contour extraction from lateral C spine radiographs. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds.) PCBBE 2017. AISC, vol. 647, pp. 164–173. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66905-2_14CrossRefGoogle Scholar
  18. 18.
    Piórkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39796-2_1CrossRefGoogle Scholar
  19. 19.
    Geusens, P., Lems, W.F.: Osteoimmunology and osteoporosis. Arthritis Res. Ther. 13, 242 (2011)CrossRefGoogle Scholar
  20. 20.
    Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157–2165 (2006)CrossRefGoogle Scholar
  21. 21.
    Stolwijk, C., van Tubergen, A., Castillo-Ortiz, J.D., Boonen, A.: Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 65–73 (2015)CrossRefGoogle Scholar
  22. 22.
    Spoorenberg, A., de Vlam, K., van der Linden, S., Dougados, M., Mielants, H., van de Tempel, H., et al.: Radiological scoring methods in ankylosing spondylitis. Reliability and change over 1 and 2 years. J. Rheumatol. 31, 125–132 (2004)Google Scholar
  23. 23.
    Tan, S., Wang, R., Ward, M.M.: Syndesmophyte growth in ankylosing spondylitis. Curr. Opin. Rheumatol. 27, 326–332 (2015)CrossRefGoogle Scholar
  24. 24.
    Tezmol, A., Sari-Sarraf, H., Mitra, S., Long, R., Gururajan, A.: Customized Hough transform for robust segmentation of cervical vertebrae from X-ray images. In: Proceedings of the 5th IEEE Southwest Symposium on the Image Analysis and Interpretation, pp. 224–228 (2002)Google Scholar
  25. 25.
    Wanders, A.J., Landewe, R.B., Spoorenberg, A., Dougados, M., van der Linden, S., Mielants, H., et al.: What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the outcome measures in rheumatology clinical trials filter. Arthritis Rheum. 50, 2622–2632 (2004)CrossRefGoogle Scholar
  26. 26.
    Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-ray image retrieval system using partial shape matching. IEEE Trans. Inf. Technol. Biomed. 12, 100–108 (2008)CrossRefGoogle Scholar
  27. 27.
    Zamora, G., Sari-Sarraf, H., Long, R.: Hierarchical segmentation of vertebrae from X-ray images. In: Proceedings of SPIE, Medical Imaging 2003: Image Processing, vol. 5032, p. 631 (2003)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marzena Bielecka
    • 1
    Email author
  • Rafał Obuchowicz
    • 2
  • Mariusz Korkosz
    • 3
  1. 1.Chair of Geoinformatics and Applied Computer Science, Faculty of Geology, Geophysics and Environmental ProtectionAGH University of Science and TechnologyCracowPoland
  2. 2.Department of RadiologyJagiellonian University Medical CollegeCracowPoland
  3. 3.Division of Rheumatology, Departement of Internal Medicine and GerontologyJagiellonian University HospitalCracowPoland

Personalised recommendations