Advertisement

A Fuzzy Measure for Recognition of Handwritten Letter Strokes

  • Michał WróbelEmail author
  • Katarzyna Nieszporek
  • Janusz T. Starczewski
  • Andrzej Cader
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

In this paper, we propose and compare a few methods of representing a stroke as a vector of numbers. For each method, we describe, how to calculate the fuzzy measure of two strokes similarity. Vectors are determined on the basis of polynomials calculated by a stroke approximation.

Keywords

Handwriting recognition ICR Stroke Fuzzy Similarity 

References

  1. 1.
    Álvarez, D., Fernández, R., Sánchez, L.: Stroke based handwritten character recognition. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 343–351. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28942-2_31CrossRefGoogle Scholar
  2. 2.
    Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and topsis for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)CrossRefGoogle Scholar
  3. 3.
    Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)CrossRefGoogle Scholar
  4. 4.
    Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)CrossRefGoogle Scholar
  5. 5.
    Ke, Y., Hagiwara, M.: An English neural network that learns texts, finds hidden knowledge, and answers questions. J. Artif. Intell. Soft Comput. Res. 7(4), 229–242 (2017)CrossRefGoogle Scholar
  6. 6.
    L’Homer, E.: Extraction of strokes in handwritten characters. Pattern Recogn. 33, 1147–1160 (2000)CrossRefGoogle Scholar
  7. 7.
    Ostrowski, D.J., Cheung, P.Y.K.: A fuzzy logic approach to handwriting recognition. In: Patyra, M.J., Mlynek, D.M. (eds.) Fuzzy Logic, pp. 299–314. Vieweg+Teubner Verlag, Wiesbaden (1996).  https://doi.org/10.1007/978-3-322-88955-3_10CrossRefGoogle Scholar
  8. 8.
    Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)CrossRefGoogle Scholar
  9. 9.
    Ptak, R., Żygadło, B., Unold, O.: Projection-based text line segmentation with a variable threshold. Int. J. Appl. Math. Comput. Sci. 27(1), 195–206 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Riid, A., Preden, J.S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)CrossRefGoogle Scholar
  11. 11.
    Wróbel, M., Starczewski, J.T., Napoli, C.: Handwriting recognition with extraction of letter fragments. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 183–192. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59060-8_18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michał Wróbel
    • 1
    Email author
  • Katarzyna Nieszporek
    • 1
  • Janusz T. Starczewski
    • 1
    • 2
  • Andrzej Cader
    • 3
    • 4
  1. 1.Institute of Computational IntelligenceCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Radom Academy of EconomicsRadomPoland
  3. 3.Information Technology InstituteUniversity of Social SciencesŁódźPoland
  4. 4.Clark UniversityWorcesterUSA

Personalised recommendations