Advertisement

Verification of Results in the Acquiring Knowledge Process Based on IBL Methodology

  • Lukasz Was
  • Piotr MilczarskiEmail author
  • Zofia Stawska
  • Slawomir Wiak
  • Pawel Maslanka
  • Marek Kot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

In the paper, we discuss IBL - Instance-Based Learning - as a method of acquiring knowledge, and apply it to the verification of the shape symmetry/asymmetry of the skin lesions. The test verifying whether the asymmetry of the lesion presented in PH2 dataset is conducted using IB3 algorithms. We also verify the construction of the DASMShape asymmetry measure and its results. We achieved classification ratio on DAS values from PH2 around 59% in comparison to 84% achieved on the defined DASMShape measure. It implies that the data verification using IBL algorithms is very vital in order to design reliable dermatological diagnosis supporting systems.

Keywords

Knowledge acquisition Advisory systems Expert systems Artificial intelligence Inference Dermatology Instance-Base Learning 

References

  1. 1.
    Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man Mach. Stud. 36, 267–287 (1992)CrossRefGoogle Scholar
  2. 2.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)Google Scholar
  3. 3.
    Batchelor, B.G.: Pattern Recognition: Ideas in Practice. Plenum Press, New York (1978)zbMATHGoogle Scholar
  4. 4.
    Biberman, Y.: A context similarity measure. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 49–63. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-57868-4_50CrossRefGoogle Scholar
  5. 5.
    Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006). ISSN 1613-9011zbMATHGoogle Scholar
  6. 6.
    Brent, M.: Instance-based Learning: nearest neighbour with generalisation. Department of Computer Science, University of Waikato (1995)Google Scholar
  7. 7.
    Brodley, C.E.: Addressing the selective superiority problem: automatic algorithm/model class selection. In: Proceedings of the Tenth International Machine Learning Conference, Amherst, MA, pp. 17–24 (1993)Google Scholar
  8. 8.
    Broomhead, D.S., Lowe, D.: Multi-variable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)zbMATHGoogle Scholar
  9. 9.
    Cameron-Jones, R.M.: Instance selection by encoding length heuristic with random mutation hill climbing. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, pp. 99–106 (1995)Google Scholar
  10. 10.
    Carpenter, G.A., Grossberg, S.A.: Massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 37, 54–115 (1987)CrossRefGoogle Scholar
  11. 11.
    Chang, C.-L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1184 (1974)CrossRefGoogle Scholar
  12. 12.
    Gagliardi, F.: Instance-based classifiers applied to medical databases: diagnosis and knowledge extraction. J. Artif. Intell. Med. 52(3), 123–139 (2011)CrossRefGoogle Scholar
  13. 13.
    Gagliardi, F.: Instance-based classifiers to discover the gradient of typicality in data. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 457–462. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23954-0_47CrossRefGoogle Scholar
  14. 14.
    Hastie, T., Tibshirani, R., Friedman, J.: Prototype methods and nearest-neighbors. In: Hastie, T., Tibshirani, R., Friedman, J. (eds.) The Elements of Statistical Learning. Data Mining, Inference, and Prediction. SSS, pp. 459–483. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-84858-7_13CrossRefzbMATHGoogle Scholar
  15. 15.
    Jaworek-Korjakowska, J., Tadeusiewicz, R.: Assessment of asymmetry in dermoscopic colour images of pigmented skin lesions. In: Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2013, pp. 368–375 (2013)Google Scholar
  16. 16.
    Jebara, T.: Machine Learning Discriminative and Generative. Springer, New York (2004).  https://doi.org/10.1007/978-1-4419-9011-2CrossRefzbMATHGoogle Scholar
  17. 17.
    Kanwal, N., Bostanci, E.: Comparative Study of Instance Based Learning and Back Propagation for Classification Problems. GRIN Verlag, USA (2016)Google Scholar
  18. 18.
    Mendonca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2-a dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 5437–5440 (2013)Google Scholar
  19. 19.
    Milczarski, P.: Skin lesion symmetry of hue distribution. In: Proceedings of the IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1006–1013 (2017)Google Scholar
  20. 20.
    Milczarski, P., Stawska, Z., Maślanka, P.: Skin lesions dermatological shape asymmetry measures. In: Proceedings of the IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017, pp. 1056–1062 (2017)Google Scholar
  21. 21.
    Milczarski, P., Stawska, Z., Was, L., Wiak, S., Kot, M.: New dermatological asymmetry measure of skin lesions. Int. J. Neural Netw. Adv. Appl. 4, 32–38 (2017)Google Scholar
  22. 22.
    Was, L., Milczarski, P., Stawska, Z., Wyczechowski, M., Kot, M., Wiak, S., Wozniacka, A., Pietrzak, L.: Analysis of dermatoses using segmentation and color hue in reference to skin lesions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 677–689. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_61CrossRefGoogle Scholar
  23. 23.
    Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 37, 257–286 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mechatronics and Information SystemsTechnical University of LodzLodzPoland
  2. 2.Faculty of Physics and Applied InformaticsUniversity of LodzLodzPoland
  3. 3.Department of Dermatology and VenereologyMedical University of LodzLodzPoland

Personalised recommendations