Advertisement

Multi-level Aggregation in Face Recognition

  • Adam KiersztynEmail author
  • Paweł Karczmarek
  • Witold Pedrycz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

This paper presents the results of an in-depth analysis of the impact of aggregation of different parts of the face to its recognition process. A novel approach is based on the aggregation of distances determined between histograms, which describe different parts of the face as well as various color channels. In addition, we propose to include thresholding to local descriptors and demonstrate that this type of image processing highly improves the accuracy of classification process. This paper also describes a new approach to converting color images to grayscale images using the variation of each channel in the neighborhood of a given pixel.

Keywords

Aggregation Facial features Face recognition Grayscale 

Notes

Acknowledgements

The authors are supported by National Science Centre, Poland [grant no. 2014/13/D/ST6/03244]. Support from the Canada Research Chair (CRC) program and Natural Sciences and Engineering Research Council is gratefully acknowledged (W. Pedrycz).

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24670-1_36CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Bereta, M., Karczmarek, P., Pedrycz, W., Reformat, M.: Local descriptors in application to the aging problem in face recognition. Pattern Recogn. 46, 2634–2646 (2013)CrossRefGoogle Scholar
  4. 4.
    Bereta, M., Pedrycz, W., Reformat, M.: Local descriptors and similarity measures for frontal face recognition: a comparative analysis. J. Vis. Commun. Image Represent. 24, 1213–1231 (2013)CrossRefGoogle Scholar
  5. 5.
    Chan, C.H., Yan, F., Kittler, J., Mikolajczyk, K.: Full ranking as local descriptor for visual recognition: a comparison of distance metrics on \(S_n\). Pattern Recognit. 48(4), 1328–1336 (2015)CrossRefGoogle Scholar
  6. 6.
    Dolecki, M., Karczmarek, P., Kiersztyn, A., Pedrycz, W.: Utility functions as aggregation functions in face recognition. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, pp. 1–6 (2016)Google Scholar
  7. 7.
    Karczmarek, P., Pedrycz, W., Reformat, M., Akhoundi, E.: A study in facial regions saliency: a fuzzy measure approach. Soft. Comput. 18, 379–391 (2014)CrossRefGoogle Scholar
  8. 8.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Rutka, P.: Chain code-based local descriptor for face recognition. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 307–316. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26227-7_29CrossRefGoogle Scholar
  9. 9.
    Karczmarek, P., Pedrycz, W., Kiersztyn, A., Rutka, P.: A study in facial features saliency in face recognition: an analytic hierarchy process approach. Soft. Comput. 21(24), 7503–7517 (2017)CrossRefGoogle Scholar
  10. 10.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Dolecki, M.: An application of chain code-based local descriptor and its extension to face recognition. Pattern Recogn. 65, 26–34 (2017).  https://doi.org/10.1016/j.patcog.2016.12.008CrossRefGoogle Scholar
  11. 11.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W.: An evaluation of fuzzy measure for face recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 668–676. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_60CrossRefGoogle Scholar
  12. 12.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W.: On developing Sugeno fuzzy measure densities in problems of face recognition. Int. J. Mach. Intell. Sens. Sig. Process. 2, 80–96 (2017)Google Scholar
  13. 13.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W.: Generalized Choquet integral for face recognition. Int. J. Fuzzy Syst. 20(3), 1047–1055 (2018).  https://doi.org/10.1007/s40815-017-0355-5CrossRefGoogle Scholar
  14. 14.
    Kasinski, A., Florek, A., Schmidt, A.: The PUT face database. Image Process. Comm. 13(3–4), 59–64 (2008)Google Scholar
  15. 15.
    Kurach, D., Rutkowska, D., Rakus-Andersson, E.: Face classification based on linguistic description of facial features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 155–166. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07176-3_14CrossRefGoogle Scholar
  16. 16.
    Kwak, K.C., Pedrycz, W.: Face recognition: a study in information fusion using fuzzy integral. Pattern Recogn. Lett. 26, 719–733 (2005)CrossRefGoogle Scholar
  17. 17.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74549-5_87CrossRefGoogle Scholar
  18. 18.
    AT&T Laboratories Cambridge. The Database of Faces. www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. Accessed 1 Aug 2016
  19. 19.
    Phillips, P.J., Wechsler, J., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  20. 20.
    [dataset] Yale database. vision.ucsd.edu/datasets/yale_face_dataset_originalGoogle Scholar
  21. 21.
    Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block LBP representation. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 11–18. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74549-5_2CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adam Kiersztyn
    • 1
    Email author
  • Paweł Karczmarek
    • 1
  • Witold Pedrycz
    • 2
    • 3
    • 4
  1. 1.Institute of Mathematics and Computer ScienceThe John Paul II Catholic University of LublinLublinPoland
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Department of Electrical and Computer Engineering, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations