Advertisement

How Unconventional Chaotic Pseudo-Random Generators Influence Population Diversity in Differential Evolution

  • Roman SenkerikEmail author
  • Adam Viktorin
  • Michal Pluhacek
  • Tomas Kadavy
  • Ivan Zelinka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

This research focuses on the modern hybridization of the discrete chaotic dynamics and the evolutionary computation. It is aimed at the influence of chaotic sequences on the population diversity as well as at the algorithm performance of the simple parameter adaptive Differential Evolution (DE) strategy: jDE. Experiments are focused on the extensive investigation of totally ten different randomization schemes for the selection of individuals in DE algorithm driven by the default pseudo random generator of Java environment and nine different two-dimensional discrete chaotic systems, as the chaotic pseudo-random number generators. The population diversity and jDE convergence are recorded for 15 test functions from the CEC 2015 benchmark set in 30D.

Keywords

Differential Evolution Complex dynamics Deterministic chaos Population diversity Chaotic map 

Notes

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University. IGA/CebiaTech/2018/003. This work is also based upon support by COST Action CA15140 (ImAppNIO), and COST Action IC406 (cHiPSet). Prof. Zelinka acknowledges following grants/projects: SGS No. 2018/177, VSB-TUO and by the EU’s Horizon 2020 research and innovation programme under grant agreement No. 710577.

References

  1. 1.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  2. 2.
    dos Santos Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  3. 3.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math. Appl. 60(4), 1088–1104 (2010)CrossRefGoogle Scholar
  4. 4.
    Pluhacek, M., Senkerik, R., Davendra, D., Oplatkova, Z.K., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math. Appl. 66(2), 122–134 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015)CrossRefGoogle Scholar
  6. 6.
    Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol. Comput. 25, 15–28 (2015)CrossRefGoogle Scholar
  7. 7.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, G.G., Guo, L., Gandomi, A.H., Hao, G.S., Wang, H.: Chaotic Krill Herd algorithm. Inf. Sci. 274, 17–34 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang, C., Cui, G., Peng, F.: A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis. Appl. Therm. Eng. 104, 707–719 (2016)CrossRefGoogle Scholar
  10. 10.
    Jordehi, A.R.: Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput. 26, 523–530 (2015)CrossRefGoogle Scholar
  11. 11.
    Wang, G.G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft. Comput. 20(9), 3349–3362 (2016)CrossRefGoogle Scholar
  12. 12.
    dos Santos Coelho, L., Ayala, H.V.H., Mariani, V.C.: A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl. Math. Comput. 234, 452–459 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)CrossRefGoogle Scholar
  14. 14.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  15. 15.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  16. 16.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)Google Scholar
  17. 17.
    Senkerik, R., Pluhacek, M., Zelinka, I., Davendra, D., Janostik, J.: Preliminary study on the randomization and sequencing for the chaos embedded heuristic. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A.E., Snasel, V., Alimi, A.M. (eds.) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015. AISC, vol. 427, pp. 591–601. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29504-6_55CrossRefGoogle Scholar
  18. 18.
    Senkerik, R., Pluhacek, M., Viktorin, A., Kadavy, T.: On the randomization of indices selection for differential evolution. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 537–547. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57261-1_53CrossRefGoogle Scholar
  19. 19.
    Senkerik, R., Pluhacek, M., Zelinka, I., Viktorin, A., Kominkova Oplatkova, Z.: Hybridization of multi-chaotic dynamics and adaptive control parameter adjusting jDE strategy. In: Matoušek, R. (ed.) ICSC-MENDEL 2016. AISC, vol. 576, pp. 77–87. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58088-3_8CrossRefGoogle Scholar
  20. 20.
    Sprott, J.C., Sprott, J.C.: Chaos and time-series analysis, vol. 69. Citeseer (2003)Google Scholar
  21. 21.
    Poláková, R., Tvrdík, J., Bujok, P., Matoušek, R.: Population-size adaptation through diversity-control mechanism for differential evolution. In: MENDEL, 22th International Conference on Soft Computing, pp. 49–56 (2016)Google Scholar
  22. 22.
    Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations